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SUMMARY 

A method for flight flutter testing is proposed 
which enables one to determine the flutter dynamic 
pressure from flights flown far below the flutter dy- 
namic pressure. The method is based on the identi- 
fication of the coefficients of the equations of motion 
at low dynamic pressures, followed by the solution of 
these equations to compute the flutter dynamic pres- 
sure. The initial results of simulated data reported 
in the present work indicate that the method can ac- 
curately predict the flutter dynamic pressure, as de- 
scribed. If no insurmountable difficulties arise in the 
implementation of this method, it may significantly 
improve the procedures for flight flutter testing. 

INTRODUCTION 

The current procedures involving flight flutter 
testing are essentially based on the experimental de- 
termination of the modal damping coefficients and on 
the study of the variation of these coefficients with 
airspeed (Ruhlin and others, 1982; Russo and others, 
1983; Roy and Walker, 1985). The flutter phenomenon 
involves an aeroelastic structural instability which may 
be violent in nature (explosive flutter), and, therefore, 
it may exhibit a rapid deterioration in modal damp- 
ings with speed increase. Therefore, a careful opening 
of the flight envelope is required to avoid a possible 
loss of the vehicle during these tests. As a result, a 
large number of flight tests are performed, involving a 
careful increase in flight speeds. These flight tests are 
both time consuming and costly; and they require fly- 
ing at speeds that are close to the flutter speeds. Ruh- 
lin and others (1982) say that for a reliable determi- 
nation of flutter speed, flight flutter tests must be per- 
formed at dynamic pressures with values around 7 to 
10 percent below the flutter dynamic pressure. There- 
fore, it is important to formulate a method that will 
permit a rapid and reliable determination of the flutter 
speed at speeds well below the flutter speed. Attempts 
to formulate such a method were made in the past by 
several investigators. Zimmerman and Weissenburger 
(1964) describe a method whereby the complex eigen- 
values of the vehicle are determined at three different 
airspeeds. These eigenvalues are then used to derive 
the vehicle's characteristic equation at these three air- 
speeds. The coefficients of the characteristic equations 

are then used to evaluate the Routh-Hurwitz stability 
discriminants. Zimmerman and Weissenburger (1964) 
show that for binary systems, the Routh-Hunvitz sta- 
bility discriminant varies in a quadratic fashion with 
the dynamic pressure. Hence, the complete parabolic 
shape can be determined from measurements at three 
different airspeeds, which can all be far below the crit- 
ical flutter speed. Unfortunately, this method does not 
seem to work with systems that have more than 2 de- 
grees of freedom. 

A variation on the aforementioned method is sug- 
gested in Houbolt (1975) in an attempt to extend the 
method of Zimmerman and Weissenburger (1964) to 
systems with more than 2 degrees of freedom. How- 
ever, the suggested variation appears to have difficul- 
ties similar to those existing in Zimmerman and Weis- 
senburger (1964), and there is no indication regarding 
its use, or even of computed analytical results since it 
had been proposed in 1975. 

Gaukroger and others (1973; 1980) make use of a 
different approach, much in accordance with the basic 
approach adopted in this work, that is, the coefficients 
of the equations of motion of the vehicle are identified, 
and the flight flutter speed is computed following the 
identification stage. However, the identification proce- 
dure in Gaukroger and others (1973; 1980) is different 
than the one presented in this work, and the results pro- 
duced in Gaukroger and others (1973; 1980) relate to 
binary systems only, much the same as in Zimmerman 
and Weissenburger (1964). Even for the simplified bi- 
nary systems presented in Gaukroger and others (1973; 
1980), the identification of the coefficients of the equa- 
tions of motion yielded substantial errors in the coeffi- 
cients. However, the final values regarding the flutter 
speed were in reasonably good agreement with the the- 
oretical flutter speeds. 

In the following work, attempts will be made 
to identify the coefficients of the equations of mo- 
tion of dynamic systems. Following this identifica- 
tion stage, applications to simulated flight flutter test- 
ing will be made. The examples presented include 
the identification of the equations of motion for a 5- 
degrees-of-freedom mass-string system; the identifi- 
cation of seven modes of a continuous simply sup- 
ported uniform beam; the identification of a 9-degrees- 
of-freedom DAST (NASA's drone for aerodynamic 
and structural testing) aircraft model and computa- 
tion of its flutter dynamic pressure; and finally, the 



identification of a 12-degrees-of-freedom YF-17 air- 
craft model and the eventual computation of its flutter 
dynamic pressure. 

NOMENCLATURE 

Variables 

b 

9 

k 

m 

n 

nf 

nP 

QD 

Q F  

V 

Pi 

IJ 

c 
P 

x 

W 

W n  

wd 

W F  

Matrices 

[AI 

[Ail 

2 

reference semichord length 

structural damping coefficient 

reduced frequency (= w b/V) 

number of excitation vectors 

number of modes 

number of excitation frequencies 

number of measurement points 

flight dynamic pressure 

flutter dynamic pressure 

flight speed 

ith aerodynamic lag term 

real part of eigenvalue X 

viscous damping coefficient 

air density 

complex eigenvalue 

frequency of oscillation 

natural frequency of oscillation 

damped frequency of oscillation 

flutter frequency 

aerodynamic matrix 

aerodynamic matrices defined in 
equation (1 6) 

defined in equation (10) 

defined in equation (12) 

defined in equation (5) 

damping matrix 

total damping matrix defined in 
equation (2 1) 

defined in equation (5) 

forcing matrix 

defined in equation (5) 

stiffness matrix 

total stiffness matrix defined in 
equation (2 1) 

mass matrix 

response amplitudes 

response amplitudes associated with 
the ith frequency of excitation 

response matrix 

defined in equation (9) 

defined in equation (12) 

eigenvector 

matrix of displacements (in physical 
coordinates) 

mode shape matrix 

ANALYTICAL APPROACH 

Identification of the Equations of Motion 

Let the equations of motion be given by 

[ f i l [ i i o l +  [CI[QOI + [ K I [ ~ o I  = [F1ekt (1) 

where all the coefficient matrices are real. It is desired 
to identify the coefficients of equation (1) by exciting 



the system over a range of frequencies using one or 
more forcing vectors, the magnitude of which need not 
be known. 

Equation (1) can also be written as 

(-[M]w2 + [ C l a w  + [ii '])[q] = 

where 

[qol = [ d e b t  

Note that matrices [ &f], [ C], and [ E ]  are of order 
n x n, where n is the number of degrees of freedom of 
the system, and [ g] and [ F] are matrices of order n x 
m, where m represents the number of fixed amplitude 
forcing columns used during the excitation. 

If one assumes that [ F ]  is known, and [ q] is mea- 
sured, then it is possible to generate enough equations 
during a frequency sweep to determine the matrix co- 
efficients [ a], r Cl , and [ Kl . 

If [ P I  is assumed to be unknown, then it may 
be more convenient to premultiply equation (2) by 
[ u1-l to obtain 

where 

and where [ I ]  is the unit matrix. Assume the sys- 
tem is excited with frequencies w1, w 2 ,  . . . wnf,  with 
responses [ 911, [ 912, . . . [ gInf. Equation (4) can then 
be written in the form 

[ CI awn! [ qlnf + [ KI [ 91nj - E FI = w$ [ qlnf 
( 6) 

Equation (6) can be written in a compact form, after 
transposing it, that is, 

Equation (7) can be written as 

r KT 1 

where 

[TI = 

[ B l  = 

(9) 

Note that matrices [ T ]  and [ B] are complex ma- 
trices. If normal complex least square analysis is ap- 
plied to equation (8), or if a generalized inverse of ma- 
trix [TI is computed, the computed values for [ K],  
[ C], and [ F] are exact only if exact responses are 
considered when constructing mamx [TI. If errors 
are allowed to exist in the measured responses [ q ] i ,  
the resulting identified coefficients show large errors in 
the computed values. This extreme sensitivity to errors 
makes this formulation worthless for practical applica- 
tions. This sensitivity to errors may be attributed to the 
fact that if matrix [TI is complex, the resulting solu- 
tion for the matrices [ K] , [ C] , and [ F ]  assumes com- 
plex form. This means that the number of unknowns 
in equation (8) is effectively doubled when dowing 
for the real and imaginary parts of each of the solu- 
tion matrices. To cut down the number of unknowns, 
equation (8) will be reformulated so as to constrain the 
solution for matrices [ K ]  , [ C], and [ F] to assume 
real values only. Later on, these constraints will im- 
pose limitations on the aerodynamic representation of 
the equations of motion, but this must be accepted if 
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one wishes to avoid the aforementioned extreme sen- 
sitivity of the solution to measurement errors. 

Equation (8) is split into its real and imaginary 
parts, while constraining the solution matrices to as- 
sume real values. Hence, equation (8) can be written 

Equation (1 1) can be written more compactly as 

Equation (13) is solved herein using a generalized 
inverse algorithm for real matrices based on singu- 
lar value decomposition (IMSL subroutine LSVDF), 
to yield 

where the symbol + denotes the generalized inverse of 
the matrix. Note that matrices [TR]  and [TI] are of 
order (nf x m) x ( 2  n+ m) and [ BR] and [ BI] are 
of the order (nf x m) x n. Hence 

[:I 
isoftheorder(2nf x m) x ( 2 n +  m) and 

[ z ]  
is of the order (2nf  x m) x n. Clearly, the solution 
matrix [Z] 

is of the order ( 2  n+ m) x n It should also be noted 
that if equation (1) relates to generalized coordinates, 
whereas measurements are made of physical coordi- 
nates z ,  then equation (14) can be used after transform- 
ing the measured z responses into the q coordinates us- 
ing the transformation matrix [ +], that is, 

[z l  = [+I[ql  ( 15) 

where the matrix [ 41 is often chosen as the orthogonal 
mode-shape matrix. The matrix [ z] is of the order np x 
m, where np is the number of measurement points of 
the physical coordinates; [ $1 is of the order n, x nand 
[ q] is of the order n x m. 

Formulation of the Flutter Equations 

As already stated, the formulation of the flutter 
equations is constrained to equations with real coef- 
ficient matrices, following the aforementioned sensi- 
tivity to errors of the measured responses. The struc- 
tural equations of motion can easily be brought to the 
form of equation (1). There remains to treat the aero- 
dynamic coefficient matrix. This matrix is a function 
of the flight Mach number, the reduced frequency k,  
and the flight dynamic pressure QD . For any specific 
Mach number, the aerodynamic matrix [A]  can be ap- 
proximated by the following Pad6 relation: 

[AI = QD [Aol + [ A i ] i k +  [A2](ik)2 ( 
(16) 

If one ignores all of the lag terms, equation (16) 

[ A 2 +  j 1 ik e 

+' ]=I i k + P j  

assumes the form 
1 1 1 

2 2 [A]  = 2pV2[Ao]  + - p V [ A l ] i ~  + - p [ A 2 ] ( i ~ ) ~  
( 17) 

(18) 

where 

and where b represents a reference semichord length 
used to compute k.  

The matrix [ A2 ] represents aerodynamic inertia 
terms. These are normally small compared to the struc- 
tural inertia terms and can therefore be ignored. Hence, 
the aerodynamic matrix can be written as 

1 1 
[AI = 2-pV2[Aol + ~ p V [ A i l i ~  ( 19) 
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Equation (19) is much in accordance with the British 
method of representation of the equations of motion 
for flutter analysis. 

Introducing equation (19) into equation (l), one 
gets the following modified form of equation (4): 

(--[I]W2 + [ c T l i W +  [ K T l ) [ Q l  = [F] (20) 

where 

If [ CT 3 and [ KT ] are determined for two values 
Q 1 and Q2 of dynamic pressures, then equation (21) 
yields 

[K] = [KTlQ=Q2 - Q ~ [ A o I  (24) 

(25) 

These equations will form the basis for the flutter 
prediction to be presented in the following sections of 
this work. 

Q2 
v2  

[cl = [CTlQ=Q2 - -[All 

SUGGESTED PROCEDURE FOR 
FLIGHT FLUTTER TESTING 

Assuming that the coefficients of the equations of 
motion can be reasonably identified, the following pro- 
cedure is suggested for flight flutter testing. 

1. Choose a flight Mach number and keep it constant 
throughout this procedure. 

2. Choose a flight altitude, and thus determine the 
value of the flight speed VI and the value of the 
dynamic pressure Q 1  for the specific conditions 
of this flight. 

3. Make an excitation frequency sweep using forc- 
ing vectors [ F]Q1 and recording the resulting re- 

4. Change the flight altitude keeping the Mach num- 
ber constant, and thus determine a new value of 
the flight speed V2 and a new value for the dy- 
namic pressure Q2, with Q2 > Q1. 

sponses [ QlIQ1 I [ 42 lQ1 * * * [ Qnf IQ1. 

5 .  With these new values of V2 and Q 2 ,  repeat 
step 3 above with [F]Q2 to obtain [ql]Q,, 

[ q21Q2, - [ QnfIQ2 

6. With the values obtained in step 3, solve for 
[ KT lQ=Q1* [ CT ]Q=QI, and [ F]Q1, Usin& equa- 
tion (20). 

7. With the values obtained in step 5, solve for 
K T  14342 9 [ C T  lQ=Q2 9 and [ FlQ=Q2 

8. with the Values Of [KT]Q=Q1, [CTlQ=Q1, 

[ KT]Q=Q~, and [ CT]Q=Q~ obtained in steps 6 and 
7, determine the matrices [ Cl, [ KI, [ Ao I ,  and 
[ A 1  ] using equations (22) to (25). 

9. Solve, numerically, equation (20) for a range of 
values of V and Q to compute the dynamic pres- 
sure Q F~ -2 . 

10. If one wishes to, one could choose Q 3  > Q2 
and repeat steps 2 and 3 to produce [ KT ] Q = Q ~ ,  

[ CT lQ=Q3 9 and [ FlQ=Q3 * 

,, 11. With the results associated with Q 2  and Q 3 ,  re- 
peat steps 8 and 9 to determine the flutter dy- 
namic pressure Q F ~ - ~  and check for agreement 
with Q 

12. Steps 10 and 11 can be repeated until reasonable 
convergence of computed flutter dynamic pres- 
sures is obtained. 

PRESENTATION AND DISCUSSION 
OF RESULTS 

Numerical Examples 

Four numerical examples are presented in this 
work. Two of the examples relate to the identification 
of simple dynamic systems without aerodynamic con- 
tributions, and two examples relate to the mathemati- 
cal models of the drone for aerodynamic and structural 
testing (DAST) and the YF- 17 aircraft. The identifica- 
tion in the last two examples are followed by the com- 
putation of the predicted flutter dynamic pressures. 

Example 1 - Mass-String System 

Example 1 was chosen in an attempt to test the 
effectiveness and sensitivities of the proposed method 
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in identifying the various matrix coefficients, includ- 
ing the forcing columns. The system is shown in fig- 
ure 1. It comprises five lumped masses attached to a 
string. The viscous dampers were chosen so that the 
resulting damping matrix will not yield proportional 
damping. The resulting coefficient matrices with val- 
ues of T/mt  = 300 and c/m = 1.8 are shown in 
table 1. Both the damped and the undamped eigen- 
values for this example are presented in table 2. The 
eigenvectors are presented in table 3. 

The system is excited analytically with forces 
having constant amplitudes. The generated responses 
are then used to identify the system. These responses 
are also contaminated with errors generated by round- 
ing the responses to two digits (thus introducing a 
nonzero mean error of up to 5 percent). 

The results obtained using a single forcing col- 
umn are summarized in tables 4 through 6 .  Table 4 
shows the values obtained for the identified system, 
using exact responses with excitation frequency span- 
ning over all the frequencies of the system. As can be 
seen, the identified system essentially coincides with 
the exact system. Table 5 is identical to table 4, except 
for the reduced frequency range used for excitation, 
spanning over three natural frequencies of the system, 
and leaving two natural frequencies outside of the ex- 
citation range. It can be seen that even for this case, 
the identified results are essentially equal to the exact 
system. This suggests that it may be advantageous to 
select a conservative range of frequencies in the anal- 
ysis, and then increase the range should frequencies be 
found outside the excitation range. Table 6 shows the 
results obtained using responses contaminated by er- 
rors introduced while rounding these responses to two 
digits. It can be seen that while the identified stiffness 
matrix [ K] is correct to within 5 percent errors, the 
damping matrix shows larger errors of up to 40 per- 
cent. The identified forcing column values are essen- 
tially the same as the exact values. At this stage, it can 
be concluded that the identified system is very close to 
the original system, provided the response errors are 
small. Furthermore, the identified parameters which 
are most sensitive to errors are the damping matrix 
coefficients. 

Results obtained using two different forcing vec- 
tors are presented in tables 7 and 8. The program as- 
sumes that each of these two forcing columns excites 
the structure at identical frequencies. This is not es- 

6 

sential, and it may even be advantageous if, say, the 
second forcing vector excites the system at interme- 
diate frequencies (which fall between the frequencies 
of excitation of the first forcing vector). Table 7 uses 
exact responses in obtaining the values of the identi- 
fied system, whereas table 8 uses responses rounded 
to two digits. It can be seen that the exact responses 
yield, once again, exact coefficients for the identified 
system. Table 8 shows that the two forcing vectors 
had very large improvements in the coefficients when 
contaminated responses are used (by rounding them to 
two digits). It can be seen that the identified values of 
the stiffness matrix [ K] and the forcing vectors [ F ]  
are essentially exact, whereas the identified values of 
the damping matrix are within 6 percent error, which 
is around the values of the errors introduced into the 
responses. Attempts to smooth the responses prior to 
their substitution in the [TI matrix did not improve 
the results, and, in many cases, the attempts led to de- 
graded results. 

Finally, tables 9 and 10 present results for the 
same cases described in tables 7 and 8 but with five 
forcing columns. It can be seen that in this case, 
the identified results are essentially exact, even when 
the responses are contaminated by rounding them to 
two digits. 

The results described indicate the advantage of 
using more than one forcing vector. It seems that for 
reasonable results, at least two linearly independent 
forcing vectors need to be used. 

Tables 11 to 13 represent the results obtained 
when using responses contaminated with 5 percent 
random errors (instead of rounding the responses to 
the nearest two-digit values). Table 11 relates to the 
case where one forcing vector is used. It can be seen 
that large errors result, somewhat higher than those ob- 
tained when the responses were rounded to two dig- 
its. Peak errors in the stiffness matrix terms reach val- 
ues around 40 percent, and peak errors in the damp- 
ing matrix terms may reach values around 60 percent. 
However, even with these relatively large errors, the 
eigenvalues of the identified system are close to those 
of the exact system, with frequency errors reaching 
maximum values of around 3 percent and peak eigen- 
value damping errors of around 28 percent (this error 
relates to the highest frequency mode, with much 
smaller values of errors in the lower modes). Even 
the eigenvectors obtained appear to be close to those 



of the exact system, with a possible exception of the 
29.68 radlsec mode. 

Table 12 shows the results obtained when using 
responses contaminated by 5 percent random errors 
and two forcing vectors. Dramatic reduction in er- 
rors can be seen with peak errors in stiffness terms of 
around 8 percent and peak errors in damping terms of 
around 20 percent, with most other terms showing er- 
rors less than 10 percent. Note that the frequencies ob- 
tained in this case, for the identified system, are essen- 
tially exact. The eigenvalue damping errors are within 
2.5 percent, and the eigenvectors are essentially iden- 
tical to those of the exact system. Table 13 shows sim- 
ilar results when using five forcing vectors. Hence we 
can see once again the importance of using more than 
one excitation vector. Furthermore, we can see that the 
peak errors in the eigenvalues and eigenvectors of the 
identified system are appreciably smaller than the peak 
errors in the individual matrix terms. 

Example 2 - Simply Supported Continuous 
Uniform Beam 

Example 2 was chosen in an attempt to test the ef- 
fects of the ignored higher modes on the identification 
of the desired lower modes. The analytical model for 
this beam is very simple, with pure sinusoidal mode 
shapes. The beam is allowed 3-percent damping to 
avoid infinite responses, and the objective set for this 
example was to identify the seven lowest modes. The 
frequencies were normalized with respect to the sev- 
enth natural frequency, rendering the following values 
for the first seven natural frequencies: 

1 ~1 = 1/49 = 0.020408 ; w2 = 4/49 = 0,081633 
~3 = 9 / 4 9 =  0.18367 ; ~4 = 16/49=0.32653 
w5 = 25/49 = 0.51020 ; w6 = 36/49 = 0.73469 
W7 = 1 

( 26) 
is set to 0.03, the 

real parts of the eigenvalues ( w i ( )  therefore will as- 
sume the following values: 

Since the damping coefficient 

The beam was analytically excited over a normal- 
ized frequency range from 0 to 1.05. Since damping is 

light, 600 values of equally spaced excitation frequen- 
cies were initially used. The analytical responses were 
computed at seven equally spaced locations along the 
beam using the contributions of the lowest 36 modes. 
In one set of cases, only seven modes were used to cal- 
culate the analytical responses, in order to evaluate the 
effects of truncation of the higher modes. 

The results obtained using two forcing vectors 
and the exact computed analytical responses of the first 
seven modes only are summarized in table 14. Since 
physical coordinates are being used, the stiffness and 
damping matrices have little meaning beyond enabling 
the computation of the eigenvalues and eigenvectors of 
the identified system. As can be seen, the eigenvalues 
(both real and imaginary parts) obtained from the iden- 
tified system are essentially exact (see eqs. (26) and 
(27)). Table 15 presents results similar to those appear- 
ing in table 14, except that in this case, the exact re- 
sponses were computed using the contributions of the 
lowest 36 modes. As can be seen, the identified fre- 
quencies are essentially exact, with some errors in the 
damping values, especially for the highest frequency. 
All the results to be presented from here on relate to 
analytical responses computed using 36 modes of the 
continuous beam. 

When the system is identified using responses 
contaminated with errors, as for example 5 percent 
random errors, the resulting eigenvalues and eigen- 
vectors show extremely large errors. It appears as if 
the higher frequencies “fold down” and mingle among 
the exact values of the lower frequencies. The rea- 
son for these large errors was eventually traced to 
the small responses associated with the higher modes. 
Since a least squares technique is effectively used 
in solving equation (13), it appears that the small 
values for the responses associated with the higher 
modes carry little weight in the least squares expres- 
sion when compared with the relatively large responses 
associated with the lower modes. To overcome this 
problem, some weighting needs to be given to the 
high-frequency equations. Hence a weighting has 
been introduced. 

Table 16 shows the results obtained while using a 
weighting proportional to the frequency of excitation, 
with responses contaminated with 5 percent random 
errors. As can be seen, excellent results are obtained 
for all frequencies, except for the damping of the first 
mode. At this stage, it is important to note that in this 
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beam example, the ratio between the highest and the 
lowest frequencies has a value of 49. This is a large 
ratio that does not exist in any practical flutter exam- 
ple. Nevertheless, the results appearing in table 16 can 
be improved by using a weighting which is constant 
(= FREQC) up to a frequency equal to FREQC and 
from thereon using a weighting equal to the frequency 
of excitation. Table 17 shows such a result when us- 
ing FREQC = 0.14. As can be seen, excellent results 
are obtained except for the highest mode, where 6 per- 
cent error in frequency is obtained and around 25 per- 
cent error in damping. The errors associated with all 
other modes are much smaller. No further efforts were 
made to improve these results since it was felt that the 
frequency ratio between the highest and lowest modes 
was too high to affect any practical flutter problem. 
Table 18 is similar to table 16 except that the exci- 
tation frequency range, spanning from 0 to 1.12, is 
subdivided into 14 subranges totaling 2 18 excitation 
frequencies instead of the 600 frequencies previously 
used. More frequencies were allowed around the reso- 
nance frequencies and less frequencies when far from 
resonance. The subranges were weighted to simulate 
integration of the square of the errors along the fre- 
quency axis. As can be seen from table 18, the results 
obtained are essentially identical to those shown in 
table 16. 

Finally, table 19 shows the results obtained us- 
ing 14 physical responses contaminated by 5 per- 
cent random errors and transformed to the seven gen- 
eralized coordinates using the known mode shapes. 
Here again, 14 excitation subranges were used with 
FREQC = 0.04. As can be seen, excellent results are 
obtained except for the 10 percent error in the damping 
of the first mode. 

Example 3 - Flutter of the DAST Aircraft 

The aforementioned two examples were very use- 
ful in helping to formulate the identification problem 
and the excitation forms so as to yield results which 
can accept contamination errors. Example 3, together 
with example 4 which relates to the flutter of the YF-17 
aircraft, are intended to test whether the aerodynamic 
simplifications made in equation (18) are valid, and 
also whether the identification procedure can yield rea- 
sonable flutter predictions from low dynamic pressure 
simulated flights. 

The three views of the drone for aerodynamic 
and structural testing (DAST) are shown in figure 2. 
The mathematical model of the DAST consists of two 
rigid body modes (plunge and pitch) and seven elas- 
tic modes ranging from around 10 to around 128 Hz. 
The responses of the DAST aircraft were obtained for 
Mach number M = 0.9 using an ‘exact’ aerodynamic 
modeling of the aircraft with four lag terms in the Pad6 
representation. The range of excitation between 0.5 to 
900 rad/sec was divided into eight subranges with a 
total of 256 excitation frequencies. The exciting gen- 
eralized forces were chosen so that all the ratios be- 
tween the active generalized forces and the general- 
ized masses are of the same order of magnitude for the 
elastic modes. For the rigid body modes, the active 
generalized forces were chosen to be between two to 
three orders of magnitude smaller. 

The root locus plot for the ‘exact’ mathematical 
model is presented in figure 3. It can be seen that the 
dynamic pressure at flutter is given by QF = 547 lb/ft2 
and the flutter frequency is given by w p  = 114 rad/sec. 
In all of the DAST root locus plots presented in this 
work, the dynamic pressure increments have the value 
of 25 lb/ft2, and the dynamic pressure Q is varied from 
0 to 750 lb/ft2. The root locus plots are truncated so as 
to show only those roots whose real parts lie within the 
range of -50 to +20. 

As already stated earlier, the flutter prediction is 
based on the identification of the equations of motion, 
and the identification stage in this example ran into 
two difficulties. The first difficulty arises since the ‘ex- 
act’ analytical scheme for solving the flutter equations 
assumes undamped structural system, with damping 
associated with aerodynamic terms only. Therefore, 
this system could not be excited at zero dynamic pres- 
sure (that is, with zero damping) since the responses 
at resonance will be infinite. To overcome this diffi- 
culty, 3 percent structural damping was assumed while 
calculating the responses of the ‘exact’ system. The 
second difficulty, of a more severe nature, occurred 
at the identification stage since the matrix, for which 
the generalized inverse was sought, showed a strong 
singularity thus indicating it was rank deficient. The 
source of this difficulty was eventually traced to the 
two rigid body modes. These modes are unaffected by 
the structural damping added to the system, and there- 
fore, their damping remains zero. In addition, at zero 
dynamic pressure, their stiffnesses are also zero so that 
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the frequency responses to a single excitation vector of 
both the pitch and the plunge generalized coordinates 
vary identically as 1 / w 2  thus yielding a [TI matrix 
(see eq. (9)) with two columns identical to two other 
columns. At this stage, one could have proceeded with 
the generalized inverse by equating to zero the two 
smallest singular values of matrix [ TI, but this would 
have left the [TI matrix ill conditioned at small values 
of Q, thus undermining the purpose of this work, that 
is, to predict flutter by identifying the system at rela- 
tively low Q values. However, once the source of the 
difficulty was traced, the fix was relatively simple, and 
it involved using two different vectors of excitation, 
where particular emphasis was placed on different ex- 
citation of the rigid body modes. Once this was done, 
excellent identification results were obtained, much in 
accordance with the results described earlier for the 
beam and for the mass-string system. This observa- 
tion is important since around flutter speed there is a 
tendency of two modes to coalesce, thus yielding two 
modes with identical frequencies (but with different 
dampings) and thus possibly giving rise to the diffi- 
culty described earlier. Hence, it is concluded that the 
excitation by more than one forcing vector is essential 
for the identification to be successful. 

Based on the aforementioned conclusions, the 
system identification stage of the flutter example 
treated herein is performed using two forcing vectors. 
It is expected that the use of a large number of forcing 
vectors may improve the numerical results, but by the 
same token, it may turn the method to be practically 
unappealing owing to the difficulties involved when a 
large number of exciters is needed. Hence all the re- 
sults to be presented for the DAST were obtained from 
a two-vector excitation system (that is, from at least 
two shakers), spanning a frequency range between 0.5 
to 900 rad/sec. 

The root locus plot obtained by solving equa- 
tion (20) for different values of Q, after identifying the 
system at Q = 0 and at Q = 150 lb/ft2, using ex- 
act responses, is shown in figure 4. Figure 5 shows 
similar results, except that this time the system was 
identified at Q = 150 lb/ft2 and at Q = 250 lb/ft2. 
It can be seen from figure 4 that for the identification 
performed at the lower values of Q, the predicted dy- 
namic pressure is QF M 560 lb/ft2 with flutter fre- 
quency W F  M 113 rad/sec. These values are in excel- 
lent agreement with those of the ‘exact’ system (fig. 3), 

especially if allowance is made for the discrepancy in- 
volving the 3 percent structural damping introduced 
into the identified system. It should be noted that the 
effect of the 3 percent structural damping manifests it- 
self in the form of displaced values for Q = 0. These 
displaced values should lie along a line with a slope 
of g/2, that is of 0.015, to the vertical axis and pass- 
ing through the origin. All the root locus plots pre- 
sented in this work, including those relating to exam- 
ple 4 which deals with the YF-17 aircraft simulation, 
clearly show this effect. Figure 5 is identical to fig- 
ure 4, except that in this case the system was iden- 
tified at Q = 150 lb/ft2 and Q = 250 lb/ft2. The 
flutter dynamic pressure computed in this case yields 
QF = 553 lb/ft? and w~ = 113 rad/sec. This is once 
again in excellent agreement with the values obtained 
using the ‘exact’ mathematical model. At this stage, 
it may be concluded that the aerodynamic simplifica- 
tions introduced in equation (19) are adequate and have 
a negligible effect on the flutter dynamic pressure and 
on the flutter frequency. 

Figures 6 and 7 are similar to figures 4 and 5, re- 
spectively, with the only exception that the responses 
used during the identification stage were contaminated 
with 5 percent random errors. It can be seen that the 
effects of these errors on the flutter dynamic pressure 
and the flutter frequency are not noticeable, yielding 
essentially the same values as for the case where no 
errors were introduced into the responses. 

At this stage, it should be stated that the identifi- 
cation stage for this example needed no weighting for 
the high modes since the ratio between the highest and 
the lowest elastic modes was much smaller than in the 
beam example (example 2). Furthermore, it should be 
mentioned that the condition number of the matrix 

[?I 
defined as the ratio between its highest and lowest 
singular values, was greatly improved by scaling its 
columns so as to yield equal maximum values in all 
columns. This scaling of columns led to the reduction 
of the condition number by at least two orders ofrnag- 
nitude, and thus leading to a solution less sensitive to 
contamination errors. 

Example 4 -Flutter of the YF-17 Aircraft 

The aerodynamic damping values for the DAST 
example were large as manifested by the scales of the 
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I abscissas of the root locus plots (after truncation) span- 
ning from -50 to +20. It was felt that the identifi- 
cation procedure might falter in cases where a much 
lower aerodynamic damping is involved. Therefore, 
it was decided to test the identification method on the 
simulated data of the YF-17 aircraft which exhibits 
relatively low aerodynamic damping values. It will 
be shown that the (truncated) abscissas for this case 
span from -3 to +4 instead of the -50 to +20 for 
the DAST. 

The plan view of the YF-17 aircraft is shown in 
figure 8. The flutter mathematical model of the air- 
craft includes 10 elastic modes, with natural frequen- 
cies varying from around 4.6 to around 62 Hz, and 
2 rigid body modes (plunge and pitch), thus yielding 
a total of 12 modes. The excitation range for generat- 
ing responses varies from 0.5 to 450 rad/sec. Two forc- 
ing vectors were used, with relative values between the 
various generalized forces in accordance with the pro- 
cedure described for the DAST example. 

Figure 9 shows the root locus plot using 'exact' 
aerodynamics with four lag terms and the 'exact' ma- 
trix coefficients. Here, and in all other YF-17 root lo- 
cus plots presented in this work, the increments in the 
dynamic pressure are 5 Ib/ft2, with the dynamic pres- 
sure varying from Q = 0 to Q = 110 lb/ft2. It can 
be seen that the flutter dynamic pressure is given by 
Q F  = 84 lb/ft2, and the flutter frequency assumes the 
value W F  = 37.4 rad/sec. 

Figures 10 and 11 present results for the case 
l . r h m r o  nn P - A ~ P  ore intrnr7,ipd intn thp rprnnnrpq nf 
W l l c l l c l  11u cl1IUli. u1cl . I . C 1 " U U U U U  l l l C V  ...I" .Y"y"""v" V I  

the aircraft. Figure 10 shows the results obtained for 
the case where the system is identified at Q = 0 and 
at Q = 20 lb/ft2. As can be seen, the results obtained 
are essentially exact, yielding Q F  M 86.5 lb/ft2 and 
W F  M 37.4 rad/sec. In this example, a 1 percent struc- 
tural damping was assumed. This was done consid- 
ering the light aerodynamic damping in this example. 
Figure 11 shows results similar to those shown in fig- 
ure 10, but for the case where the system is identified 
at Q = 20 and Q = 35 lb/ft2. Here again, essentially 
exact values are obtained, with Q F  M 87 lb/ft2 md 
W F  M 36.8 rad/sec. Similar to the DAST example, 
the origins of the root locus branches (at Q = 0) all 
lie on a straight line passing through the origin, with a 
slope of g/2 ( = 0.005) to the ordinate. 

Figures 12 and 13 show the results obtained when 
the responses are contaminated with 5 percent ran- 

dom errors. It can be seen that the results are essen- 
tially exact if one allows for the effects of the 1 per- 
cent structural damping, yielding Q F  = 86.5 lb/ft2 
and W F  = 37.4 rad/sec for the system identified at 
Q = 0 and Q = 20 lb/ft2, and Q F  = 86.1 lb/ft2 
and WF = 37.1 rad/sec for the system identified at 
Q = 20 and Q = 35 lb/ft2. 

CONCLUDING REMARKS 

The results presented in this work have shown 
that it is possible to identify the coefficients of the 
aeroelastic equations of motion of a dynamic system. 
The method is robust only if the coefficients of the 
equations of motion are real and the solution procedure 
uses this fact. It is also found that for robustness, more 
than one excitation vector needs to be used. This is true 
in all the cases treated herein, but is particularly essen- 
tial when few modes have either the same value of fre- 
quency, or have frequencies with close values. In these 
latter cases, particular attention is needed in providing 
different excitation vectors, with particular emphasis 
on the generalized forces associated with the identical 
or close frequencies. This is particularly true for the 
rigid body modes of the aircraft where not only the fre- 
quencies are the same, or almost the same, but also the 
dampings assume identical or close values. These rigid 
body modes cannot be readily ignored during the iden- 
tification procedure, since they have very strong aero- 
dynamic coupling terms with the elastic modes, thus 
leading to some unexplained elastic distortions at low 
frequencies. These distortions greatly affect the identi- 
fied results (when rigid body modes are ignored). The 
results obtained indicate that in all cases, two excita- 
tion vectors, with constant amplitudes throughout the 
frequency sweep, yield very good results. In the case 
of the beam where the elastic modes were spread over 
a large frequency range, some weighting of the equa- 
tions was necessary. However, none of the other ex- 
amples required any weighting, and it is not believed 
that practical flutter examples will ever need it. It was 
also found that scaling of the matrix columns, to equal 
maximum values before performing the generalized 
inverse procedure, improved robustness by reducing 
the ratio between the largest and the smallest singular 
values by at least two orders of magnitude. 

Indeed, it was surprising to find out how good 
the introduced aerodynamic approximations were. Al- 
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though these approximations appear to yield aerody- 
namic coefficients that are identical to the British rep- 
resentation, nevertheless they are different in that the 
British aerodynamic coefficients relate to a constant re- 
duced frequency, whereas in the present method, the 
values of the identified coefficients include the effects 
of the reduced frequency on the different modes. Fi- 
nally, it is gratifying to find that in both flutter exam- 
ples treated herein, the flutter dynamic pressures and 
flutter frequencies are accurately predicted from simu- 
lated flight data gathered at dynamic pressures far be- 
low QF. However, it is still too early to state whether 
this method can be turned into a practical flight test- 
ing method. To do this, one needs to test the method in 
ground vibrations to gauge the errors introduced by the 
experimental setup and their effects on the identified 
system. In parallel, physical shaker locations should 
be analytically evaluated in some flutter examples, and 
the method need be reformulated for possible aerody- 
namic excitations using control surfaces with or with- 
out excitation vanes. Wind-tunnel and flight valida- 
tion tests need to be performed, and, if successful, the 
method can be adapted to cope also with aircraft hav- 
ing active flutter suppression systems. 

Ames Research Center 
Dryden Flight Research Facility 
National Aeronautics and Space Administration 
Edwards, California, July 21, I988 
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TABLE 1. THE COEFFICIENT MATRICES FOR THE 5-DEGREES-OF-FREEDOM 
MASS-STRING SYSTEM 

5.4 -1.8 0 0 -1.8- 
1.8 5.4 -1.8 -1.8 0 
0 -1.8 3.6 1.8 0 
0 -1.8 1.8 5.4-1.8 

-1.8 0 0 -1.8 5.41 

[CI = 

600 -300 0 0 0 - 1 0 0 0 -300 600 - 

-300 600 -300 0 0 
[ K ]  = 0 -300 600 -300 0 

0 0 -300 600 -300 

TABLE 2. EIGENVALUES OF EXAMPLE WITH 5 DEGREES OF FREEDOM 

Mode x 
no. W n  c1 wd c 
1 8.96575 -0.241154 8.96251 0.0268972 

3 24.4949 - 1.80000 24.4287 0.0734847 
4 30.0000 -4.50000 29.6606 0.15 
5 33.4607 -3.35885 33.2916 0 A00382 

2 17.3205 -2.70000 17 .lo88 0 A5885 

TABLE 3. EIGENVECTORS OF EXAMPLE WITH 5 DEGREES OF FREEDOM 

Mode Mode Mode Mode Mode 
1 2 3 4 5 

0.2887 0.5000 0.5773 -0.5000 -0.2887 
0.5000 0.5000 0 0.5000 0.5000 
0.5773 0 -0.5773 0 -0.5773 
0.5000 -0.5000 0 -0.5000 0.5000 
0.2887 -0.5000 0.5773 0.5000 -0.2887 



TABLE 4. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES 
(n = 5, nfreq = 100, wfbegin = 0, wfend = 40.0, nfrce = 1) 

SINGULAR VALUES SING(1) 

0.805129E + 02 
0.906324 E + 01 
0.146845E + 00 

0.610284E + 02 
0.698794 E + 01 

INPUT MATRIX K 

0.600000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

-0.300000 E + 03 

IDENTIFIED MATRIX K 

0.600000 E + 03 
-0.300000E + 03 
-0.216360E - 11 

0.448352E - 11 
-0.440892E - 11 

INPUT MATRIX C 

-0.300000 E + 03 
0.600000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 

-0.300000 E + 03 

-0.3OOOOO E + 03 
0.6OOOOO E + 03 

-0.300000 E + 03 
-0.909495 E - 12 

0.116529 E - 11 

0.540000 E + 01 
-0.180000E + 01 

0 ,000000E + 00 
0 .000000 E + 00 

-0.180000E + 01 

-0.180000 E + 01 
0 S40000E + 01 

-0.180000E + 01 
-0.180000E + 01 

0.000000E + 00 
IDENTIFIED MATRIX C 

0.540000 E + 01 -0.18OOOO E + 01 
-0.180000E+ 01 O.540000E+ 01 
-0.959233E - 13 

0.245137 E - 12 
-0.180000E + 01 
-0.180000E + 01 

-0.180000E + 01 0.4298783 - 12 

INPUT MATRIX F**(T) 

O.100000E + 03 O.000000E + 00 

IDENTIFIED MATRIX F**(T) 

0 ,100000E + 03 0.125233E - 12 

0.389048 E + 02 0.304252 E + 02 0.939689 E + 01 
O.l88909E+Ol 0.149979E+01 0.374279E+00 

0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 

-0.300000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

-0.300000 E + 03 
0 .000000 E + 00 

0.600000 E + 03 
-0.300000 E + 03 

-0.300000 E + 03 
0.600000 E + 03 

-0.223821 E - 12 0.913047 E - 12 -0.436984E - 12 
-0.300000E + 03 -0.318323E - 11 0.224532E - 11 

-0.300000 E + 03 -0.909495 E - 12 
0.600000 E + 03 -0.300000 E + 03 

-0.300000 E + 03 0.600000 E + 03 

0.600000 E + 03 
-0.300000 E + 03 

0.682121 E - 12 

0.000000E + 00 O.000000E + 00 -0.180000E+ 01 
-0.180000E+01 -0.180000E+01 0.000000E+00 

0.360000E + 01 -0.180000E + 01 O.000000E + 00 
-0.180000E + 01 0.540000E + 01 -0.180000E + 01 

-0.180000 E + 01 0.540000 E + 01 0 .000000 E + 00 

0.204212E- 13 0.807132E - 13 -0.180000E + 01 
-0.180000E+01 -0.180000E + 01 -0.972555E- 13 

0.360000E + 01 -0.180000E + 01 0.101252E - 12 
0 .5400OO E + 01 -0,180000 E + 01 -0.180000E + 01 

-0.313194E- 12 -0.180000E+ 01 0.540000E+ 01 

0 .000000 E + 00 0 .000000 E + 00 0 .000000 E + 00 

-0.229150 E - 12 0.452971 E - 12 -0.367706 E - 12 
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TABLE 5. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES WITH A REDUCED FREQUENCY 
EXCITATION RANGE (SMALLER THAN THE SYSTEM’S FREQUENCY RANGE) 

(n = 5, nfreq = 100, wfbegin = 0, wfend = 27.0, nfrce = 1, ntruncate = 0) 

SINGULAR VALUES SING(1) 

0.999001 E + 02 0.644175 E + 02 0.4679983 + 02 0.1574113 + 02 0.112027 E + 02 

0.141374E - 01 
0.744586E + 01 0.204753E + 01 0.1446383 + 01 0.9175813 + 00 0.394669E - 01 

INPUT MATRIX K 

0.600000E+03 -0.300000E+03 O.O00000E+OO 0.000000E+00 0.000000E+00 
-0.300000 E + 03 -0.300000 E + 03 0 .000000 E + 00 

0 .000000 E + 00 0.600000 E + 03 0 .000000 E + 00 
0.000000E + 00 0 .000000E + 00 -0.3OOOOO E + 03 0.600000E + 03 -0.300000 E + 03 

0.600000 E + 03 
-0.300000E + 03 

0 .000000 E + 00 
-0.300000 E + 03 

0.000000E + 00 0 .000000 E + 00 0.000000E + 00 -0.300000E + 03 0.600OOO E + 03 

IDENTIFIED MATRIX K 

0.600000E + 03 -0.300000E + 03 -0.380709E - 10 0.414815E - 10 -0.275548E - 10 
-0.3OOOOO E + 03 0.6OOOOO E + 03 -0.300OOO E + 03 -0.355840 E - 10 0.235332 E - 10 
-0.214584E - 11 -0.300000E + 03 0.600000E + 03 -0.300000E + 03 0.187583E - 10 

O.480327E - 11 -0.710543E - 11 -0.300000E + 03 O.600000E + 03 -0.300000E + 03 
-0.122498E- 10 0.221121E - 10 -0.285922E - 10 -0.300000E + 03 0.600000E + 03 

INPUT MATRIX C 

0.540000E + 01 -0.180000E + 01 0 .000000 E + 00 0 .000000 E + 00 -0.180000 E + 01 
-0.180000E+ 01 0.540000E+ 01 -0.180000E+01 -0.180000E+01 0.000000E+00 

O.O00000E+ 00 -0.180000E+ 01 0.360000E+01 -0.180000E+01 0.000000E+00 
O.O00000E+ 00 -0.180000E+ 01 -0.180000E+01 0.540000E+01 -0.180000E+01 

-0.1800OOE + 01 0.000000 E + 00 O.000000E + 00 -0.180000E + 01 O.540000E + 01 

IDENTIFIED MATRIX C 

0.540000E+01 -0.180000E+01 -0.814460E- 12 0.106604E- 11 -0.180000E+ 01 
-0.180000E+ 01 0.540000E+01 -0.180000E+01 -0.180000E+01 0.8641983- 12 
-0.300759E - 12 -0.180000E + 01 0.360000E + 01 -0.180000E + 01 -0.533795E - 12 

0.940359E - 13 -0.180000E + 01 -0.180000E + 01 0.540000E + 01 -0.180000E + 01 
-0.180000E+ 01 0.791159E- 12 -0.135580E- 11 -0.180000E+ 01 0.540000E+ 01 

INPUT MATRIX F**(T) 

IDENTIFIED MATRIX F**(T) 

O.l00000E+03 0.959233E- 12 -0.814904E- 12 0.536904E- 12 -0.112710E- 11 

I 14 



TABLE 6. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES ROUNDED TO TWO DIGITS 
(n = 5, nfreq = 100, wfbegin = 0, wfend = 40.0, nfrce = 1, ntruncate = 1, nsing = 0) 

SINGULAR VALUES SINGO) 

0.807032 E + 02 
0.910814 E + 01 
0.156853 E + 00 

0.610709 E + 02 
0.698627E + 01 

INPUT MATRIX K 

0.600000 E + 03 -0.300000 E + 03 
-0.300000E+ 03 0.600000E + 03 

-0.300000 E + 03 0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

IDENTIFIED MATRIX K 

0.586000 E + 03 
-0.286081 E + 03 
-0.206888 E + 01 
-0.682018E + 01 

0.286527 E + 01 

-0.287116 E + 03 
0.572231 E + 03 

-0.273644E' + 03 
-0.812837 E + 01 
-0.600799 E - 01 

INPUT MATRIX C 

0.540000E + 01 -0.180000E + 01 
-0.180000E + 01 0.540000E + 01 

0 .OOOOOO E + 00 -0.180000 E + 01 
O.OOOOOOE+ 00 -0.180000E+ 01 

0 .000000 E + 00 -0.180000 E + 01 

IDENTIFIED MATRIX C 

0 S61371 E + 01 -0.102137 E + 01 
-0.235185 E + 01 0.509210 E + 01 

0.689283 E + 00 -0.237106 E + 01 
-0.366219 E + 00 -0 .lo4917 E + 01 
-0.170601E+ 01 -0.210497E+ 00 

INPUT MATRIX F**(T) 

O.100000E + 03 O.000000E + 00 

IDENTIFIED MATRIX F**(T) 

0.997144 E + 02 -0.781761E + 00 

0.388331 E + 02 
0.189392 E + 01 

0.303359 E + 02 
0.150738 E + 01 

0.939338 E + 01 
0.392295 E + 00 

0 .000000 E + 00 0 .000000 E + 00 0 .000000 E + 00 
-0.300000E + 03 0.000000E + 00 0.00000OE + 00 

0.6OOOOO E + 03 
-0.300000 E + 03 

0 .000000 E + 00 

-0.300000 E + 03 
0.600000 E + 03 

-0.300OOO E + 03 

0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 

0.974557 E + 01 
-0.285391 E + 03 

0.563153 E + 03 
-0.268178 E + 03 
-0 307834 E + 01 

-0.316641 E + 02 
0.615751 E + 01 

-0.265827 E + 03 
0.550117 E + 03 

-0.282137B + 03 

0.263701 E + 02 
-0.784484E + 01 
-0.223147 E + 02 
-0.264529 E + 03 

0.588391 E + 03 

0 .000000 E + 00 0 .000000 E + 00 -0,180000 E + 01 
-0 .1800 '00~+01 -O.l80000E+Ol 0.000000E+00 

0.360000 E + 01 -0.180000 E + 01 0 .000000 E + 00 
-0.180000E + 01 0.540000E+ 01 -0.180000E + 01 

0.000000E + 00 -0.180000E + 01 0.540000E + 01 

-0.710652 E + 00 
-0.754696 E + 00 

0.296940 E + 01 
-0.211044 E + 01 

0.703446 E + 00 
-0.304576 E + 01 
-0.638892 E + 00 

0.516889 E + 01 

-0.224857 E + 01 
0.112021 E + 01 

-0.124476 E + 01 
-0.141857 E + 01 

0.267120E + 00 -0.184889B + 00 0.541996E + 01 

0.000000E + 00 O.000000E + 00 O.000000E + 00 

0.186927E + 01 -0.144992E + 01 0.462906 E + 00 
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TABLE 7. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES AND TWO FORCING VECTORS 
(n = 5, nfreq = 100, wfbegin = 0. wfend = 40.0, nfrce = 2, nderv = 0, ntruncate = 0, ndigits = 3, nsing = 0) 

SINGULAR VALUES SINGO) 

0.113830E+03 0.820036E+02 0.577449E+02 0.4073243+02 0.275308E+ 02 
0.1275813+ 02 0.826819E+ 01 O.774559E+ 01 O.289272E+ 01 0.280360E + 01 
0.118339 E + 01 0.714605 E + 00 

INPUT MATRIX K 

0.600000E + 03 -0.300000E + 03 0 .000000 E + 00 0 .000000 E + 00 0 .000000 E + 00 
-0.300000 E + 03 0 .000000 E + 00 

0 .000000 E + 00 0 .000000 E + 00 
0 .000000 E + 00 -0.300000E + 03 
0 ,000000E + 00 0.000000E + 00 0 .000000 E + 00 -0.300000 E + 03 0.600000 E + 03 

0.600000 E + 03 
-0.300000 E + 03 

0 .000000 E + 00 

-0.300000 E + 03 
0.600000 E + 03 

-0.300000 E + 03 

0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 

IDENTIFIED MATRIX K 

0.600000E + 03 -0.300000 E + 03 -0.710543 E - 12 0.227374E - 12 -0.383693E - 12 
-0.30OOOO E + 03 0.600000 E + 03 -0.300000 E + 03 -0.568434 E - 13 0.369482 E - 12 

0.2074783 - 11 -0.300000E+ 03 0.600000E + 03 -0.300000E + 03 -0.312639E - 12 
-0.483169 E - 12 -0.795808E - 12 -0.300000E + 03 0.600000E + 03 -0.300000E + 03 
-0.179057E- 11 0.113687E- 11 -0.397904E- 12 -0.300000E+03 0.600000E+03 

lNPUT MATRIX C 

0.540000E + 01 -0.180000E + 01 0.000000E + 00 0 .000000 E + 00 -0.180000 E + 01 
-0.180000E+ 01 0.540000E+ 01 -0.180000E+01 -0.180000E+01 0.000000E+00 

O.O00000E+ 00 -0.180000E+ 01 0.360000E+01 -0.180000E+01 0.000000E+00 
0 .000000E + 00 -0.180000E + 01 -0.1800OO E + 01 0.540000 E + 01 -0.180000E + 01 

-0.180000E+ 01 O.O00000E+ 00 0.000000E+00 -0.180000E+ 01 0.540000E+ 01 

IDENTIFIED MATRIX C 

0.540000E+01 -0.180000E+ 01 -0.7371883- 13 -0.762723E- 13 -0.180000E+01 
-0.180000E + 01 0.540000E + 01 -0.180000E + 01 -0.180000E + 01 0.370814E - 13 
-0.852651E - 13 -0.180000E + 01 0.360000E + 01 -0.180000E+ 01 0.657252E - 13 

0.699441E- 13 -0.180000E + 01 -0.180000E + 01 0.540000E + 01 -0.180000E + 01 
-0.1800OOE + 01 0.534017E - 13 -0.9814373 - 13 -0.18OOOOE + 01 0.540000E + 01 

INPUT MATRIX F**(T) 

0.100000 E + 03 0 .000000 E + 00 0 .000000 E + 00 
0.000000E + 00 0.000000E + 00 0.000000E + 00 0 .000000E + 00 0.100000E + 03 

0 .000000 E + 00 0 .000000 E + 00 

IDENTIFIED MATRIX F**(T) 

O.l00000E+ 03 0.1865173 - 12 -0.110134E - 12 0.834888E - 13 -0.162537E - 12 
0.524025E- 13 -0.186517E- 12 0.214939E- 12 -0.188294E- 12 0.100000E+03 



TABLE 8. IDENTIFICATION OF MASS-STRING SYSTEM WITH RESPONSES ROUNDED TO TWO DIGITS, 
USING TWO FORCING VECTORS 

(n = 5. nfreq = 100, wfbegin = 0, wfend = 40.0, nkce = 2, nderv = 0. ntruncate = 1, ndigits = 2, nsing = 0) 

SINGULAR VALUES SINGO) 

0.114106E+03 0.820496E+02 
0.127880 E + 02 0.825774E + 01 
0.1191763 + 01 0.715271E + 00 

INPUT MATRIX K 

0.600000 E + 03 
-0.300000E + 03 

0 .000000 E + 00 

-0.300000 E + 03 
0.600000E + 03 

-0.300000 E + 03 
0.000000E+00 0.000000E+00 
0 .000000 E + 00 0 .000000 E + 00 

IDENTIFIED MATRIX K 

0.596843 E + 03 
-0.296257 E + 03 

0.798027 E + 00 
-0.196209 E + 01 

0.114821 E + 01 

-0.294724 E + 03 
0.593089 E + 03 

-0.298236E -t 03 
0.470965 E + 00 

-0.863264 E + 00 

INPUT MATRIX C 

0.540000 E + 01 
-0.180000 E + 01 

0.000000E + 00 
0 .000000 E + 00 

-0.18OOOO E + 01 

-0.180000 E + 01 
0.540000 E + 01 

-0.180000E + 01 
-0.180000 E + 01 

0.000000E + 00 

IDENTIFIED MATRIX C 

0.557895E + 01 
-0.193914 E + 01 
-0.199781E - 01 

0.865564E - 01 

-0.170116E + 01 
0.539453 E + 01 

-0.1968683 + 01 
-0.169785E + 01 
-0.850484E - 02 -0.180889E + 01 

INPUT MATRIX F**(T) 

O.lOO00OE + 03 
0 .00OOOO E + 00 

0.0000OOE + 00 
0 .000000 E + 00 

IDENTIFIED MATRIX F**(T) 

0.1OO219 E + 03 
0.918566 E - 01 

-0.259031 E + 00 
0.4582213 - 01 

0.576723 E + 02 
0.773024 E + 01 

0 .000000 E + 00 

0.600000E+ 03 

0 .000000 E + 00 

-0.3OOOOO E + 03 

-0.3OOOOO E + 03 

-0.176846 E + 01 
-0.297839 E + 03 

0.599565 E + 03 
-0.297839 E + 03 
-0.176846 E + 01 

0 .000000 E + 00 

0.360000 E + 01 

0 .000000 E + 00 

-0,180000 E + 01 

-0.180000E + 01 

0.978228 E - 01 
-0.177369 E + 01 

0.349926 E + 01 
-0.177369E + 01 

0.978228 E - 01 

0 .000000 E + 00 
0 .000000 E + 00 

0.140905 E + 00 
0.140905 E + 00 

0.4066133 + 02 
0.289335E + 01 

0.274326 E + 02 
0.281242E + 01 

O.000000E + 00 0.000000E+ 00 
0 .000000 E + 00 0 .000000 E + 00 

0.6000oO E + 03 -0.30WOE + 03 
-0.300000 E + 03 0 .000000 E + 00 

-0.300000 E + 03 0.600OOO E + 03 

-0.8632643 + 00 0.114821E+ 01 
-0.196209 E + 01 

0.798027 E + 00 
-0.296257 E + 03 

0.596843 E + 03 

0.470965 E + 00 
-0.298236 E + 03 

0.593089 E + 03 
-0.294724 E + 03 

0 .000000 E + 00 
-0.180000 E + 01 
-0.180000 E + 01 

0.540000 E + 01 
-0.180000 E + 01 

-0.180000 E + 01 
0 .000000 E + 00 
0 .000000 E + 00 

-0.180000 E + 01 
0.540000 E + 01 

-0.850484 E - 02 
-0.169785E + 01 
-0.1968683 + 01 

0.539453E + 01 
-0.170116 E + 01 

-0.180889 E + 01 
0.865564 E - 01 

-0.199781 E - 01 
-0.193914 E + 01 

0.557895 E + 01 

0 .000000 E + 00 
0 .OOOOOOE + 00 

0 .000000 E + 00 
1 .OOOO00 E + 03 

0.458221 E - 01 
-0.259031 E + 00 

0.918566 E - 01 
-0 .lo0219 E + 03 
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TABLE 9. IDENTIFICATION OF MASS-STRING SYSTEM USING EXACT RESPONSES AND FIVE FORCING COLUMNS 
(n = 5, nfreq = 100, wfbegin = 0, wfend = 40.0, nfrce = 5, nderv = 0, ntruncate = 0, ndigits = 3, nsing = 0 )  

~ SINGULAR VALUES SINGO) 
~ 

0.278734E+03 0.100354E+03 0.8113683+ 02 0.671963E+02 0.579641E+02 
0.312493E + 02 0.995577 E + 01 0.941263 E + 01 0.907758 E + 01 0.901629E + 01 
0.861631E + 01 0.483233E + 01 0.415057E + 01 0.195707E + 01 0.192773E + 01 

INPUT MATRIX K 

0.600000 E + 03 
-0.30OOOO E + 03 

0 .000000 E + 00 

-0.300000 E + 03 
0.600000E + 03 

-0.300000 E + 03 

0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 

- 0.300000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 0.000000E + 00 -0.300000 E + 03 0.600000 E + 03 -0.300000 E + 03 
0 .000000 E + 00 0 .000000 E + 00 0.600000 E + 03 0 .000000 E + 00 -0.300000 E + 03 

IDENTIFIED MATRIX K 

0.600000E + 03 -0.300000E+ 03 0.214954E - 12 0.170530E - 12 0.568434E - 13 
-0.30oOOO E + 03 0.600000 E + 03 -0.300000 E + 03 -0.255795 E - 12 0.397904 E - 12 

0.203662E - 11 -0.300000E + 03 0.600000 E + 03 -0.300OOO E + 03 0.265534E - 12 
-0.312639 E - 12 0.454747E - 12 - 0 . 3 0 0 ~ ~ 0  E + 03 0.600OOO E + 03 -0.300000 E + 03 

0.142109E- 11 -0.156319E - 11 0.103560E - 11 -0.300000E + 03 0.600000E+ 03 

INPUT MATRIX C 

0.540000E+01 -0.180000E+01 0.000000E+00 0.000000E+00 -0.180000E+01 
-O.l80000E+01 O.540000E+ 01 -0.180000E+01 -0.180000E+01 0.000000E+00 

0 .000000 E + 00 0 .000000 E + 00 -0.180000 E + 01 0.360000 E + 01 -0.180000 E + 01 
O.000000E + 00 -0.18OOOOE + 01 -0.180000E + 01 0.540000E + 01 -0.180000E + 01 

-0.180000 E + 01 0.000000E + 00 0 .000000 E + 00 -0.180OOO E + 01 0.540000 E + 01 

IDENTIFIED MATRIX C 

0.540000 E + 01 -0.180000 E + 01 -0.651621 E - 13 -0.275335 E - 13 -0.18OOOO E + 01 
-0.180000E + 01 0.540000E + 01 -0.180000E + 01 -0.180000E + 01 0.293099E - 13 

0.866313E - 13 -0.180000E + 01 0.360000E + 01 -0.180000E + 01 0.351885E - 14 
0.648370E- 13 -0.180000E+01 -0.180000E+01 0.540000E+01 -0.180000E+01 

-0.180000E + 01 -0.117240E - 12 0.129333E - 12 -0.180000E + 01 0.540000E + 01 

INPUT MATRIX F**(T) 

0.100000 E + 03 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

1 .000000 E + 03 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
1 .000000 E + 03 

0 .000000 E + 00 
0.100000 E + 03 

I 0 .000000 E + 00 0.100000 E + 03 0 .000000 E + 00 0 .000000 E + 00 0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

IDENTIFIED MATRIX F**(T) 

0.100000E + 03 -0.123279E - 11 -0.239980E - 12 O.586198E - 12 0.706990E - 12 
-0.532907 E - 13 0.3552713 - 14 0.343008 E - 12 -0.301981 E - 12 0 ,100000 E + 03 
-0.319744E - 12 O.100000E + 03 -0.111739E - 12 -0.195399E - 12 -0.159872E - 12 
-0.185281E - 12 0.327390E - 12 0.10000OE + 03 0.233939E- 12 -0.251703E - 12 
-0.188294E - 12 0.1811883 - 12 0.182793E - 12 O.100000E + 03 -0.159872E - 12 
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TABLE 10. IDENTIFICATION OF MASS-STRING SYSTEM USING RESPONSES ROUNDED TO TWO DIGITS AND 
FIVE FORCING COLUMNS 

(n = 5, nfreq = 100, wfbegin = 0, wfend = 40.0, nfrce = 5. ntruncate = 1, nsing = 0) 

SINGULAR VALUES SINGO) 

0.279289 E + 03 
0.313014 E + 02 
0.86072523 + 01 

0.100350E + 03 
0.995633 E + 01 
0.482696 E + 01 

INPUT MATRIX K 

0.600000 E + 03 
-0.300000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 
0 .000000E + 00 

-0.300000 E + 03 
0.600000 E + 03 

-0.3oOOOO E + 03 
0 .000000 E + 00 
0 .000000E + 00 

IDENTIFIED MATRIX K 

0.597600 E + 03 
-0.297177 E + 03 
-0.164678 E + 01 

-0.296943 E + 03 
0.596373 E + 03 

-0.297408 E + 03 
0.425542E + 00 
0.107052 E + 00 

-0.820422E + 00 
-0 343780 E - 01 

INPUT MATRIX C 

0.540000E + 01 -0.180000E + 01 
-0.180000E + 01 0.540000E + 01 

0.000000E+00 -0.180000E+ 01 
0.0000OOE + 00 -0.180000E + 01 

-0.180000 E + 01 0 .OOOOOO E + 00 

IDENTIFIED MATRIX C 

0.538372 E + 01 
-0.178253 E + 01 
-0.115444E - 01 

0.375789 E - 01 

-0.179809 E + 01 
0.539514 E + 01 

-0.179368E + 01 
-0.180406E + 01 
-0.163945E - 01 -0.181218E + 01 

INPUT MATRLX F**(T) 

0.100000E+03 O.O00000E+ 00 
0 .000000 E + 00 0 .000000 E + 00 
0 .OO0000 E + 00 0.100000 E + 03 
0 .000000 E + 00 0 .000000 E + 00 
0 .000000 E + 00 0 .000000 E + 00 

IDENTIFIED MATRIX F**(T) 

0.996082 E + 02 
-0.148873 E - 01 

0.218553 E + 00 
0.133903 E + 00 

0.190199 E + 00 
0.558700 E - 01 
0.996508 E + 02 
0.655929 E + 00 

0.815127E - 01 -0.179082E + 00 

0.8106873 + 02 0.673052E + 02 0.578963 E + 02 
0.941196 E + 01 0.907725 E + 01 0.901826E + 01 
0.4151453+ 01 0.196900E+ 01 0.193199E+ 01 

0 .000000 E + 00 0 .000000 E + 00 0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 
-0.300000 E + 03 

0 .O00000 E + 00 

0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 
-0.300000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 

-0.300000 E + 03 
0.600000 E + 03 

-0.165657E + 01 -0.843780E - 01 0.107052E + 00 
-0.297361 E + 03 -0.820422 E + 00 0.425542 E + 00 

0.596766 E + 03 -0.297408 E + 03 -0.164678 E + 01 
-0.297361 E + 03 0.596373 E + 03 -0.297177 E + 03 
-0.165657 E + 01 -0.296943 E + 03 0.597600 E + 03 

O.O00000E+00 0.000000E+00 -0.180000E+01 
-0.180000E+01 -0.180000E+01 0.000000E+00 

0.360000E+01 -0.180000E+01 0.000000E+00 
-0.180000E + 01 0.5400WE + 01 -0.180000E + 01 

-0.180000 E + 01 0.540000 E + 01 0 .000000 E + 00 

-0.2523653 - 01 -0.163945E - 01 -0.181218E + 01 
-0.173583 E + 01 -0.18O406 E + 01 0.375789 E - 01 

0.350283 E + 01 -0.179368 E + 01 -0.115444 E - 01 
-0.173583E+ 01 0.5395143+ 01 -0.178253E+ 01 
-0.252365E - 01 -0.179809E + 01 0.538372E + 01 

0 .000000 E + 00 0 .000000 E + 00 0 .000000 E + 00 
0.000000E+00 O.O00000E+OO 0.100000E+03 
0 .000000 E + 00 0 .OOOOOO E + 00 0 .000000 E + 00 
1.000000E + 03 O.000000E + 00 0.000000E+ 00 
0 .000000 E + 00 0.100000 E + 03 0 .000000 E + 00 

0.1343603 - 01 O.5587OOE - 01 -0.148873E - 01 
0.134360E-01 0.190199E+ 00 0.996082E+02 
0.3201993 + 00 -0.179082E + 00 0.8151273 - 01 
0.990216E+02 0.655929E+00 0.1339033+00 
0.320199 E + 00 0.996508 E + 02 0.218553 E + 00 
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TABLE 11. IDENTIFICATION OF MASS-STRING SYSTEM WITH RESPONSES CONTAMINATED BY 5 PERCENT RANDOM 
ERRORS USING ONE FORCING VECTOR 

(n = 5, nfreq = 100, wfbegin = 0, wfend = 40.0, nfrce = 1, nderv = 0, ntruncate = 0. ndigits = 0, nsing = 0, nrand = 1, ranpcent = 5.0) 
I 
I SINGULAR VALUES SINGO) 
~ 

0.810376 E + 02 0.6113243 + 02 0.389486 E + 02 0.305393 E + 02 0.947908E + 01 
0.916512 E + 01 0.697298 E + 01 0.188564 E + 01 0.150699 E + 01 0.412525 E + 00 
0.221762 E + 00 

I INPUT MATRIX K 

0.600000 E + 03 
-O.300000 E + 03 

0 .000000 E + 00 
0 .0000OO E + 00 
0 .000000 E + 00 

-0.300000 E + 03 
0.600000 E + 03 

-0.300000 E + 03 
0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
-0.300000 E + 03 

0.6OOOOO E + 03 
-0.300000 E + 03 

0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

-0.300OOO E + 03 
0.600000 E + 03 

-0.300oOO E + 03 

0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

-0.300000 E + 03 
0.600000 E + 03 

IDENTIFIED MATRIX K 

0.595943 E + 03 -0.254982 E + 03 -0.628979 E + 02 0.593688 E + 02 -0.418472 E + 02 
-0.289290 E + 03 0.508327 E + 03 -0.156406 E + 03 -0.142342 E + 03 0.990645 E + 02 
-0,645780 E + 00 -0.193836 E + 03 0.393238 E + 03 -0.699174 E + 02 -0.160582 E + 03 
-0.1065363 + 02 -0.743161E + 02 -0.120407E + 03 0.374253E + 03 -0.138458E + 03 
0.459025 E + 01 0.314581 E + 02 -0.760430 E + 02 -0.199994 E + 03 0.528483E + 03 

I 
INPUT MATRIX C 

0.540000E+ 01 -0.180000E+ 01 O.O00000E+OO 0.000000E+00 -0.180000E+01 
-0.180000E + 01 O.540000E + 01 -0.180000E + 01 -0.180000E + 01 0.00000OE + 00 

O.O00000E+ 00 -0.180000E+ 01 0.360000E+01 -0.180000E+01 0.000000E+00 
O.O00000E+ 00 -0.180000E+ 01 -0.180000E+01 0.540000E+01 -0.180000E+01 

-0.180000E+01 O.O00000E+ 00 0.000000E+00 -0.180000E+01 0.540000E+01 

IDENTIFIED MATRIX C 

0.638825E + 01 -0 .B6800 E + 01 -0.859907E + 00 0.164740 E + 01 -0.350468 E + 01 
-0.380275 E + 01 0.690763 E + 01 -0.147975E + 00 -0.602997 E + 01 0.369787 E + 01 

0.277855 E + 01 -0.466157 E + 01 0.245420 E + 01 0.320580 E + 01 -0.455018 E + 01 
-0.2261593 + 01 0.116000E + 01 -0.179366E + 01 0.223212E + 01 0.149027E+ 01 
-0.705297 E + 00 -0.124906 E + 01 0.200627E + 00 -0.734732 E + 00 0.413788 E + 01 

INPUT MATRIX F**(T) 

IDENTIFIED MATRIX F**(T) 
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TABLE 11. Concluded. 

Identified system Inuut system 
Real Im a ein arv Real Imaeinarv 

x -0 2392 E + 01 o ,3438 E + 02 -0 3359 E + o i  o ,3329 E + 02 

0.3221 E + 00 

0.5758 E + 00 

0.2246 E + 00 

-0.5404 E + 00 

-0.4401 E + 00 

-0.4156 E - 01 
0.7587 E - 01 
0 .OW0 E + 00 

-0 .lo71 E + 00 
0.9828 E - 01 

0.2887 E + 00 

0.5774 E + 00 

0.2887 E + 00 

-0.5000 E + 00 

-0.5000 E + 00 

0.1713E - 15 
-0.2113E - 14 

0 .0000 E + 00 
-0.5711E - 15 
-0.2284 E - 15 

-0.3898 E + 01 0.2891 E + 02 -0.4500 E + 01 0.2966 E + 02 

-0.5172 E + 00 
0.6099 E + 00 
0.3381 E + 00 
0.4282 E - 01 
0.6161 E - 01 

-0.5276 E - 01 
0 .OW0 E + 00 
0.1481E + 00 

0.3260 E + 00 
-0.3311 E + 00 

-0.5000 E + 00 
0.5000 E + 00 

-0.1439E - 14 
-0.5000 E + 00 

0.5000 E + 00 

0.4121 E - 15 
0 .0000 E + 00 
0.3641 E - 15 

-0.6868 E - 15 
0.2060E - 15 

-0.1870 E + 01 0.2439 E + 02 -0.1800 E + 01 0.2443 E + 02 

-0.5632 E + 00 
-0,1945 E - 01 

0.5884 E + 00 
-0.2112E - 02 
-0.5768 E + 00 

-0.8426 E - 02 
0.4464 E - 02 
0.0000 E + 00 
0.2526 E - 01 

-0.5298 E - 01 

-0.5774 E + 00 
0.6929E - 15 
0.5774 E + 00 

-0.6103E - 15 
-0.5774 E + 00 

0.7274 E - 15 
0.6871 E - 15 
0 .0000 E + 00 

-0.39383 - 15 
-0.3810 E - 15 

-0.2661 E + 01 0.1711E + 02 -0.2700 E + 01 0.1711E + 02 

0.5018 E + 00 
0.5015 E + 00 

-0.3410 E - 02 
-0.4983 E + 00 
-0.4978 E + 00 

0 .Om0 E + 00 
0 . lOl lE  - 01 
0.1263 E - 01 

-0.1199 E - 01 
-0.1043E - 01 

-0.5000 E + 00 
-0.5000 E + 00 

0.1697E - 14 
0.5000 E + 00 
0.5000 E + 00 

-0.9099 E - 15 
-0.4079E - 15 
-0.9205 E - 15 

0 .0000 E + 00 
0.3137E - 16 

-0.2402 E + 00 0.8962E + 01 -0.2412 E + 00 0 3963 E + 01 

0.2894 E + 00 
0.5006 E + 00 
0.5773 E + 00 
0.4993 E + 00 
0.28813 + 00 

0.5452 E - 02 
0.16723 - 02 
0 .OW0 E + 00 

-0.4662 E - 02 
-0.2236 E - 02 

0.2887 E + 00 
0.5000 E + 00 
0.5774 E + 00 
0.5000 E + 00 
0.2887 E + 00 

0.1758E - 15 
-0 .lo55 E - 15 

0 .0000 E + 00 
-0.1407 E - 15 

0.1934E - 15 
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TABLE 12. IDENTIFICATION OF THE MASS-STRING SYSTEM WITH RESPONSES CONTAMINATED BY 5 PERCENT 
ERRORS, USING TWO FORCING VECTORS 

(n = 5, nfreq = 100, wfbegin = 0, wfend = 40, nfrce = 2, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, nrand = 1, ranpcent = 5) 

SINGULAR VALUES SING(1) 

0.113636 E + 03 0 321057 E + 02 0.577159 E + 02 0.4071323 + 02 0.276802 E + 02 
0.1273383 + 02 0.826123E + 01 0.776452E + 01 0.289924E+ 01 0.281445E + 01 
0.118886E+ 01 0.736966E+00 

I 

I 

INPUT MATRIX K 

0.600000 E + 03 

0 .000000 E + 00 

-0.300000E + 03 

-0.300000 E + 03 

0 .000000 E + 00 

0.600000 E + 03 

0 .000000 E + 00 

-0.300000 E + 03 

0 .000000 E + 00 
-0.300000E + 03 0.600000E + 03 -0.300000 E + 03 0 .000000 E + 00 0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 03 
0 .OO0000 E + 00 

0 .000000 E + 00 
0 .OO0000 E + 00 

-0.3OOOOO E + 03 
0 .000000 E + 00 

0.600000 E + 00 
-0.300OOO E + 03 

-0.300000 E + 03 
0.600000 E + 00 

IDENTIFIED MATRIX K 

0.594185 E + 03 -0.291472 E + 03 -0.656767 E + 01 0.353434 E + 01 -0.867322 E + 00 
-0.288592E+ 03 0.576535E + 03 -0.277703E + 03 -0.142293E + 02 0.624185E+ 01 
-0.110985E+ 02 -0.275517E+ 03 0.573438E + 03 -0.278207E+ 03 -0.817331E+ 01 

0.507562 E + 01 -0.114907 E + 02 -0.284552 E + 03 0.584563 E + 03 -0.293429 E + 03 
-0 .104684E + 01 -0.125127E + 01 -0.202359E + 01 -0.297760E + 03 0 .5985713 + 03 

INPUT MATRIX C 

0.540000E+ 01 -0.180000E+ 01 O.000000E + 00 0.000000E+ 00 -0.180000E+ 01 
-0.180000E+ 01 0.540000E+ 01 -0.180000E+01 -0.180000E+01 0.000000E+00 

0 ,000000E + 00 0.360000 E + 01 0 .000000 E + 00 
O.O00000E+ 00 -0.180000E+ 01 -0.180000E+01 0.5400OOE+01 -0.180000E+01 

-0.180000E + 01 0 .000000 E + 00 0.000000E + 00 -0.180000 E + 01 0.540000E + 01 

-0.180000 E + 01 -0.180OOO E + 01 

IDENTIFIED MATRIX C 

0.523275 E + 01 -0.174659 E + 01 -0 .lo0059 E + 00 -0.167062 E + 01 
-0.198011E + 01 0.541224E + 01 -0.166087E+ 01 -0.166055E + 01 -0.109726E+ 00 

0.187856E + 00 -0.204428 E + 01 0.334890E + 01 -0.217474E + 01 0.674523 E - 01 
-0.176856E - 01 -0.137403E + 01 -0.141109E + 01 0.568810E + 01 -0.160570E+ 01 
-0.191548E + 01 -0.108815E + 00 -0.275413E+ 00 -0.195241E + 01 0.525610E+ 01 

-0.974456 E - 01 

INPUT MATRIX F**(T) 

0.100000 E + 03 0 .000000 E + 00 0 .0000OO E + 00 
0.000000 E + 00 0.000000E + 00 0.000000 E + 00 0 .000000E + 00 O.100000E + 03 

0 .000000E + 00 0 .000000 E + 00 

IDENTIFIED MATRIX F**(T) 
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TABLE 12. Concluded. 

Input system Identified system 
Real Imaginary 

-0.3446 E + 01 0.3329 E + 02 

0.2869 E + 00 
-0.4993 E + 00 

-0.9929 E - 02 
0.6365 E - 02 

0.5783E + 00 0.000OE + 00 
-0.5004 E + 00 

0.2882E + 00 
0.8803 E - 02 

-0.1479E - 01 

-0.4395 E + 01 0.2968 E + 02 

Real 
-0.3359 E + 01 

Imaginary 
0.3329 E + 02 x 

0.2887 E + 00 

0.5774 E + 00 

0.2887 E + 00 

-0.5000 E + 00 

-0.5000 E + 00 

0.1713E - 15 
-0.2113 E - 14 

0 .0000 E + 00 
-0.5711 E - 15 
-0.2284 E - 15 

x -0.4500 E + 01 0.2966 E + 02 

-0.4969E+00 0.16283-01 
-0.5428 E - 02 
-0.3406 E - 02 

0 .I025 E - 01 

0.5004 E + 00 
-0.2208 E - 02 
-0.4995 E + 00 

0.5028 E + 00 0 .OW0 E + 00 

-0.5000 E + 00 
0.5000 E + 00 

-0.1439E - 14 
-0.5000 E + 00 

0.5000 E + 00 

0.4121 E - 15 
0 .0000 E + 00 
0.3641 E - 15 

-0.6868 E - 15 
0.2060 E - 15 

x -0,1729 E + 01 0.2443 E + 02 -0 .I800 E + 01 0.2443 E + 02 

-0.5760E+00 0.1962E-01 
-0.2400 E - 02 -0.9299 E - 02 

0.5783 E + 00 0 .0000 E + 00 
0.5488 E - 03 

-0.5773 E + 00 
-0.7725 E - 02 

0.1035 E - 01 

-0.5774 E + 00 
0.6929 E - 15 
0.5774 E + 00 

-0.6103 E - 15 
-0.5774 E + 00 

0.7274E - 15 
0.6871 E - 15 
0 .0000 E + 00 

-0.39383 - 15 
-0.3810E - 15 

x -0.2657 E + 01 0.1712 E + 02 

-0.4993 E + 00 
-0.4998 E + 00 
-0.9424 E - 03 

-0.4080 E - 02 
-0.2474 E - 02 

0.4799 E - 02 
0.5002 E + 00 0.2247E - 03 
0 .5007E+00 0 .0000E+00 

-0.24183 + 00 0.8962E + 01 

-0.2700 E + 01 

-0.5000 E + 00 
-0.5000 E + 00 

0.1697E - 14 
0.5000 E + 00 
0.50W E + 00 

0.1711 E + 02 

-0.9099 E - 15 
-0.4079 E - 15 
-0.9205 E - 15 

0 .0000 E + 00 
O.3137E - 16 

x -0.2412 E + 00 0.8963 E + 01 

0.2891 E + 00 
0 .SO05 E + 00 

0 .I210 E - 02 
-0.5869 E - 03 

0.5774E+ 00 0.00OOE + 00 
0.4992 E + 00 
0.2884 E + 00 

-0 .lo80 E - 01 
0.7788 E - 04 

0.2887 E + 00 
0.5000 E + 00 
0.5774 E + 00 
0.50OO E + 00 
0.2887 E + 00 

0.1758 E - 15 
-0.1055E - 15 

0 .0000 E + 00 
-0.1407E - 15 

0.1934E - 15 
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TABLE 13. IDENTIFICATION OF THE MASS-STRING SYSTEM WITH RESPONSES CONTAMINATED BY 5 PERCENT 
RANDOM ERRORS, USING FIVE FORCING VECTORS 

(n = 5, nfreq =100, wfbegin = 0, wfend = 40, nfrce = 5, nderv = 0 ntruncate = 0, ndigits = 0, nsing = 0, nrand = 1, ranpcent = 5) 

SINGULAR VALUES SING(1) 

0.279744E + 03 
0.313713 E + 02 
0.8616873 + 01 

0 .lo02883 + 03 
0.995525 E + 01 
0.484428E + 01 

INPUT MATRIX K 

0.60oOOO E + 03 
-0.300000 E + 03 

0 .000000 E + 00 

-0.300000E + 03 
0.600000 E + 03 

-0.3OOOOO E + 03 
0 .000000E + 00 
0 .000000E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

IDENTIFIED MATRIX K 

0.591900 E + 03 -0.290599 E + 03 
-0,288661 E + 03 0.583348 E + 03 
-0.6624873 + 01 
-0.237708E + 01 
0.379455E + 01 

-0.287400 E + 03 
-0.943632 E + 00 
-0.407109B + 01 

INPUT MATRIX C 

O.540000E+ 01 -O.l80000E+ 01 
-0.180000E + 01 0.540000E + 01 

0 .000000E + 00 -0.180000E + 01 
O.O00000E+ 00 -0.180000E+ 01 

-0.180000E+01 O.O00000E+00 

IDENTIFIED MATRIX C 

0.538023E + 01 
-0,169194 E + 01 
-0.159521E + 00 

-0.163016E + 01 
0.506214 E + 01 

-0.160840E t 01 
0.127531E- 01 -0.167744E + 01 

-0.112703E + 00 -0.172936E + 01 

INPUT MATRIX F**(T) 

0.100000 E + 03 
0 .ooOooOE + 00 
0.000000E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0.000000E + 00 
O.100000E + 03 
0 .000000 E + 00 
0 .000000 E + 00 

IDENTIFIED MATRIX F**(T) 

0.999927E + 02 

0.663155 E + 00 
-0.813813E + 00 

0.108633E + 01 

0.969599 E + 02 
0.103218E + 01 

0.115166E + 01 -0.177106E + 01 

-0.958776 E + 00 0.211859 E + 01 

0.812816 E + 02 0.674947E + 02 0.580173E + 02 
0.941646E + 01 O.908247E + 01 0.901177E + 01 
0.415906E + 01 0.199922E + 01 0.196229E + 01 

0 .000000 E + 00 
-0.300000 E + 03 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

0.600000 E + 03 
-0.300000 E + 03 

0 .ooOO00 E + 00 

-0.300000 E + 03 
0.600000 E + 03 

-0.300000 E + 03 

0 .000000 E + 00 
-0.300000 E + 03 

0.600000 E + 03 

-0.464199E + 01 0.851605E + 00 0.151260E + 01 
-0,291235 E + 03 -0.700458 E + 00 -0.540150 E + 01 

0.5867113 + 03 -0.288167E+ 03 -0.282718E+ 01 
-0.287669E+ 03 0.580414E + 03 -0.287120E + 03 
-0.381536E + 01 -0.288546E+ 03 0.588515E+ 03 

0.000000E+00 0.000000E+00 -0.180000E+01 
-0.180000E + 01 -0.180000E + 01 O.000000E + 00 

0.360000E + 01 -0.180COOE + 01 0.000000E + 00 
-0.180000E+01 0.540000E+01 -0.180000E+01 

-0.180000 E + 01 0.540000 E + 01 0 .000000 E + 00 

0.680588 E - 01 -0.598664 E - 03 -0.168049 E + 01 
-0.181617E + 01 -0.162600E + 01 -0.154139E + 00 

-0.188682E + 01 -0.260642 E - 01 
-0.153805E + 01 0.522405 E + 01 -0.162362E + 01 
-0,5183683 -01 -0.160310E + 01 0.530303E + 01 

0.334577 E + 01 

0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 
0.100000 E + 03 
0 .000000 E + 00 

0.000000E + 00 
0 .000000 E + 00 
0 .000000 E + 00 
0 .000000E + 00 
0.100000 E + 03 

0 .000000 E + 00 
0.100000 E + 03 
0 .000000 E + 00 
0 .000000 E + 00 
0 .000000 E + 00 

-0.116052 E + 01 -0.129725 E + 00 
-0.930904E - 02 0.143839E + 01 0.984132E + 02 

0.193322 E + 00 

0.247974E + 01 0.759462E + 00 -0.151197E + 01 
0.971246E + 02 0.341816E + 01 -0.129490E + 01 
0.605688E - 01 0.969814E + 02 0.231097E + 01 
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TABLE 13. Concluded. 

Identified system Input system 
Real Imaginary Real Imaginary 

A -0.3200 E + 01 0.3331 E + 02 -0.3359 E + 01 0.3329 E + 02 

0.2856 E + 00 

0.5770 E + 00 

0.2920 E + 00 

-0.49673 + 00 

-0.5032E + 00 

0.1153E - 01 
-0.1260 E - 01 

0 .0000 E + 00 
0.5074 E - 02 

-0.1572 E - 02 

0.28873 + 00 

0.5774E + 00 

0.2887 E + 00 

-0.5000E + 00 

-0.5000 E + 00 

0.1713E - 15 
-0.2113E - 14 

0 .ooOOE + 00 
-0.5711 E - 15 
-0.2284E - 15 

-0.4246 E + 01 0.2970 E + 02 -0.4500E + 01 0.2966 E + 02 

0.4998E + 00 
-0.4952 E + 00 
-0.7987 E - 02 

0.5041E + 00 
-0.4995 E + 00 

0.3023 E - 01 
-0.2047 E - 01 

0.2386 E - 02 
0 .0000 E + 00 

-0.1633 E - 02 

-0.5000E + 00 
0.5000E + 00 

-0.1439E - 14 
-0.5000E + 00 

0.5000 E + 00 

0.4121E - 15 
O.0000E + 00 
0.3641E - 15 

-0.68683 - 15 
0.2060 E - 15 

-0.2398 E + 00 

0.2888E + 00 
0 SO03 E + 00 
0.5774 E + 00 
0.4997E + 00 
0.2885 E + 00 

0 3963 E + 01 -0.2412 E + 00 0.8963 E + 01 

-0.2463 E - 02 
0.3370 E - 03 
0 .0000 E + 00 

-0.4708 E - 02 
-0.2799 E - 02 

0.2887 E + 00 
0.5000 E + 00 
0.5774 E + 00 
0.5000E + 00 
0.2887 E + 00 

0.1758E - 15 
-0.lO55E - 15 

0.00OOE + 00 
-0.1407E - 15 

0.1934E - 15 

-0.2674E + 01 0.1711E + 02 -0.2700E + 01 0.1711 E + 02 

-0.4995 E + 00 
-0.4997 E + 00 
-0.7201 E - 03 

0,5000 E + 00 
0.5007 E + 00 

-0.3862 E - 02 
-0.6449 E - 02 

0.3104 E - 02 
0.5524 E - 02 
0 .0000 E + 00 

0,2443 E + 02 

-0.5000 E + 00 
-0.5000E + 00 

0.1697E - 14 
0.5000 E + 00 
0.5000E + 00 

-0.18OOE + 01 

-0.9099 E - 15 
-0.4079 E - 15 
-0.9205 E - 15 

O.0000E + 00 
0.3137B - 16 

0.2443 E + 02 -0.1798 E + 01 

-0.5773 E + 00 
0.1570E - 03 
0.5774 E + 00 

-0.3479 E - 03 
-0.5773E + 00 

0.1467 E - 02 
-0.1683 E - 02 

0 .0000 E + 00 
-0.1367 E - 02 

0.3366 E - 02 

-0.5774 E + 00 
0.6929 E - 15 
0.5774E + 00 

-0.6103E - 15 
-0.5774 E + 00 

0.7274 E - 15 
0.6871E - 15 
O.0000E + 00 

-0.3938 E - 15 
-0.3810E - 15 
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TABLE 14. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS AND 
EXACT RESPONSES OF THE FIRST SEVEN MODES ONLY 

(n = 7, nfreq = 600, wfbegin = 0, wfend = 1.05, nfrcev = 2, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq = 7. < = 0.03, 
nrand = 0, ranpcent = 0) 

INPUT MATRIX [F] TRANSPOSED 
I 

-0.lOOOOOE + 02 O.000000E + 00 O.000000E + 00 O.400000E + 02 O.MIOOOOE + 00 
0.000000E+00 -O.100000E+O2 

0.000000E+00 0.100000E+02 -0.600000E+02 0.000000E+00 0.600000E+02 
-0.lOOOOOE + 02 O.000000E + 00 

I SINGULAR VALUES SING(I) 

0.115942E+04 0.183762E+03 
0.249105 E + 02 0.235481 E + 02 
0.140976 E + 02 0.122655 E + 02 
0.301421 E + 01 

IDENTIFIED MATRIX K 

0.194333E + 00 
-0 .lo3836 E - 01 
0.124870 E + 00 

-0.242166 E + 00 
0.207858 E - 01 

-0.252550E + 00 
0.129282 E + 00 

-0.103836E - 01 
0.298417 E + 00 

-0.432996 E - 01 

-0.198867E + 00 
0 A41206 E - 02 

-0.536832 E - 01 
0.319203 E + 00 

-0.432996 E - 01 
0.124870E + 00 

-0 3 2 5 5 0  E + 00 
0.251978E - 01 

-0.198867 E + 00 
0 .lo4084 E + 00 

IDENTIFIED MATRIX C 

0.221459 E - 01 
-0.249120E - 03 

0.346338 E - 02 
-0.152006 E - 01 

0.507200 E - 03 
-0.154497E - 01 

0.356842 E - 02 
-0.249120 E - 03 

0.251020 E - 01 
-0.109798 E - 02 

-0.141026 E - 01 
0 .lo5045 E - 03 

-0.134710 E - 02 
0.256092 E - 01 

-0 .lo9798 E - 02 
0.346338 E - 02 

-0.154497E - 01 
0.612245 E - 03 

-0.141026 E - 01 
0.295618 E - 02 

IDENTIFIED MATRIX [F] TRANSPOSED 

-0.154553 E - 01 
0.624034 E - 02 

-0.122724 E - 01 
-0.373314 E - 01 

0.624034 E - 02 
-0.154553 E - 01 

0.373314 E - 01 
0.122724 E - 01 

0.676501 E + 02 
0.206399 E + 02 
0.620207 E + 01 

0.510157 E + 02 
0.162942 E + 02 
0.553820 E + 01 

0 257955 E + 02 
0.150041 E + 02 
0.489011 E + 01 

0 .lo4084 E + 00 
-0.198867 E + 00 
0.251978 E - 01 

-0.432996 E - 01 
0.298417 E + 00 

-0 .lo3836 E - 01 
-0.252550 E + 00 

0.124870E + 00 
0.129282 E + 00 

-0.252550 E + 00 
-0.432996 E - 01 

0.319203 E + 00 
-0.536832 E - 01 

0.441205 E - 02 

0.207858 E - 01 
-0.242166 E + 00 

0.124870E + 00 
-0 .lo3835 E - 01 

-0,198867 E + 00 0.194333 E + 00 

0.207858 E - 01 
-0.242166 E + 00 
0 .lo4084 E + 00 

0.323615 E + 00 

0.104084E + 00 

-0.536832 E - 01 

-0.536832 E - 01 

-0.242166 E + 00 
0.207857 E - 01 

0.295618 E - 02 
-0.141026 E - 01 

0.612245 E - 03 
-0.154497 E - 01 

0.3463383 - 02 
-0 .lo9798 E - 02 

0.256092 E - 01 
-0.134710 E - 02 

0 .lo5044 E - 03 
-0.141026 E - 01 

-0 .lo9798 E - 02 
0.251020E - 01 

-0.249120 E - 03 
0.356842 E - 02 

-0.154497 E - 01 
0.5072OO E - 03 

-0.152006 E - 01 
0.346338 E - 02 

-0.249120 E - 03 
0.221459 E - 01 

0.507200 E - 03 
-0.152006 E - 01 

0.295618 E - 02 
-0.134710 E - 02 

0.257143 E - 01 
-0.134710 E - 02 

0.295618 E - 02 
-0.152006 E - 01 

0.507199 E - 03 

-0.457675 E - 02 0.708310 E - 01 -0.457675 E - 02 

-0.900742 E - 01 0.550067 E - 08 0.900742 E - 01 

I 
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TABLE 14. Concluded. 
~~~~ ~ 

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM 

Real - 
-0 .I53061 E - 01 

- Real 
-0.300000 E - 01 

Imaginary 
0.509974 E + 00 

Imaginary 
0.999550 E + 00 

-0.127617 E + 00 
0.235806 E + 00 

0.333479 E + 00 

0.235805 E + 00 

-0.308095 E + 00 

-0.308095 E + 00 

-0 .I27617 E + 00 

0.1387833 + 00 

0.335052 E + 00 

0.335052 E + 00 

0.138783E + 00 

-0.256438 E + 00 

-0.362658 E + 00 

-0.256438 E + 00 

-0.322855 E + 00 
0.247103 E + 00 
0 .I33731 E + 00 

0.133731E + 00 
0.247103 E + 00 

-0.322855 E + 00 

-0.349456 E + 00 

0.521317 E + 00 

-0.215937 E + 00 
0.564270 E + 00 

-0.215937 E + 00 

0.521317 E + 00 

-0.398999 E + 00 

-0.398999 E + 00 

-0.220408 E - 01 0.734363 E + 00 -0.979592 E - 02 0.326384 E + 00 

0.344239 E + 00 

0.344239 E + 00 
-0.486827 E + 00 

0.782669 E - 07 
-0.344239 E + 00 

0.486827 E + 00 
-0.344238 E + 00 

-0.264681 E + 00 
0,374315 E + 00 

-0.601784E - 07 
0.264681 E + 00 

0.264681 E + 00 

-0.264681 E + 00 

-0.374315 E + 00 

-0.228487 E + 00 
-0.122446 E - 07 

0.228487 E + 00 
0.244892 E - 07 

-0.228487 E + 00 
-0.367337 E - 07 

0.228487E + 00 

0.650636 E + 00 
0.348675 E - 07 

-0.650636 E + 00 
-0.697349E - 07 

0.650636 E + 00 
0 .lo4602 E - 06 

-0.650636 E + 00 

-0.551020 E - 02 0.183591E+ 00 -0.612245 E - 03 0.203990 E - 01 

-0.170202E - 01 
-0.130267 E - 01 

0.705001 E - 02 
0.184226 E - 01 
0.705002 E - 02 

-0.130267E-01 
-0.170202E - 01 

-0.244898 E - 02 

0.469741 E + 00 
0.359524 E + 00 

-0.194573E + 00 
-0.508444 E + 00 
-0.194573 E + 00 

0.359524 E + 00 
0.469741 E + 00 

-0.280115 E - 01 
-0.517586 E - 01 
-0.676258 E - 01 
-0.731977 E - 01 
-0.676258 E - 01 
-0.517586 E - 01 
-0.280115 E - 01 

0.529895 E + 00 
0.979119E+ 00 
0.127928E + 01 
0.138468E + 01 
0.127928 E + 01 
0.979119E + 00 
0.529895 E + 00 

0 315959 E - 01 

-0.127306 E + 01 
-0.180037E + 01 
-0.127306E + 01 
-0.964816 E - 07 

0.127306 E + 01 
0.180037 E + 01 
0.127306 E + 01 

0.198449 E + 01 
0.280649 E + 01 
0.198449 E + 01 
0.150399E - 06 

-0.198449E + 01 
-0.280649 E + 01 
-0 .I98449 E + 01 
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TABLE 15. IDENTIFICATION OF A SIMPLY SUPPORTED BEAM USING TWO EXCITATION VECTORS AND EXACT 
RESPONSES COMPUTED FROM THE FIRST 36 MODES 

(n = 7, nfreq = 600, wfbegin = 0, wfend = 1.05, nfrcev = 2, nderv = 0, ntruncate = 0, ndigits = 0, nsing = 0, ngcneq = 36. < = 0.03, 
nrand = 0, ranpcent = 0) 

INPUT MATRIX [F] TRANSPOSED 

-0.100000E + 02 0.000000E + 00 
0 .OO00OOE + 00 -0.100000E + 02 

O.O00000E+ 00 O.100000E + 02 
0.000000E + 00 -0 .10000OE + 02 

SINGULAR VALUES SING(I) 

O.l15942E+ 04 0.183763E+03 
0.249300 E + 02 0.235497 E + 02 
0.141307E+ 02 0.122596E+02 
0.299861 E + 01 

IDENTIFIED MATRIX K 

0.194154E+00 -0.198739E+00 
0.399402 E - 02 

-0.5329213 - 01 
-0.981493 E - 02 

0.1248913 + 00 
-0.242851E + 00 

-0.2535603 + 00 
0.129492E + 00 

0.298646 E + 00 
-0.432542E - 01 

0.319701E + 00 

0.126791E + 00 
-0.252778E + 00 

-0.198931 E + 00 
0.104114E + 00 

0.211090 E - 01 -0.449151 E - 01 

-0 .lo0359 E - 01 0.246617 E - 01 

IDENTIFIED MATRIX C 

0.217318 E - 01 
0.923199 E - 04 
0.324092 E - 02 

-0.159270 E - 01 
0.106889 E - 02 

-0.193230E - 01 
0.459770 E - 02 

-0.403959 E - 03 
0.245029 E - 01 

-0.491068E - 03 

-0.1332413 - 01 
-0.204040 E - 04 
-0.992960 E - 03 

0.267096 E - 01 
-0.272362 E - 02 

0.673824 E - 02 
-0.164758 E - 01 

0.773779 E - 03 
-0.137570E - 01 

0.234333 E - 02 

IDENTIFIED MATRIX [F] TRANSPOSED 

-0.164802 E - 01 
0.826640 E - 02 

0.826640 E - 02 
-0.164802 E - 01 

-0.115302E-01 0.368466E -01 
-0.368466 E - 01 0.115302 E - 01 

-0.600000 E + 02 0 .000000 E + 00 0.600000 E + 02 

0.676513E+02 0.510163E+ 02 0.256999E+02 
0.2071623 + 02 0.162879E + 02 0.150063E + 02 
0.620508E + 01 0 S57900E + 01 0.488090E + 01 

0.104114E + 00 
-0.19893IE + 00 

0.2466173 - 01 
-0.252778 E + 00 

0.1267913 + 00 

0.319701 3 + 00 
-0.4491513 - 01 

-0.532921 E - 01 
0.399401 E - 02 

-0.198739 E + 00 

0.234334 E - 02 
-0.137570 E - 01 

0.773777 E - 03 
-0.164758E - 01 

0.673824 E - 02 
-0.272362 E - 02 

0.267096 E - 01 
-0.992962 E - 03 
-0.204039 E - 04 
-0.133241 E - 01 

-0.432543 E - 01 
0.298646 E + 00 

-0.100359E - 01 
0.129492 E + 00 

0.204214 E - 01 
-0.242462 E + 00 

0.104582E + 00 
-0.540456 E - 01 

-0.253560 E + 00 

-0.242851E + 00 

0.324001 E + 00 

0.104582E + 00 
0.211090 E - 01 -0.540456 E - 01 

0.124891 E + 00 -0.242462 E + 00 
0.204213 E - 01 -0.981492 E - 02 

0.1941546 + 00 

-0.491067E - 03 
0.245029 E - 01 

-0.403958 E - 03 
0.459770 E - 02 

-0.193230E - 01 
0,106889 E - 02 

-0.159270E - 01 
0.324092 E - 02 
0.923197 E - 04 
0.217318 E - 01 

-0.207902 E - 03 
-0.150367 E - 01 

0.330504 E - 02 
-0.239643 E - 02 

0.293090 E - 01 
-0.239643 E - 02 

0.330504 E - 02 
-0.150367 E - 01 
-0.207901 E - 03 

-0.748574 E - 02 0.723171 E - 01 -0.748574 E - 02 

-0.890205 E - 01 0.155712 E - 08 0.890205 E - 01 
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TABLE 15. Concluded. 

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM 

- Real Imaginary - Real 
X -0.3267153 - 01 0.100052E + 01 -0.151021E - 01 

-0.137688 E + 00 
0.257350 E + 00 

-0.340528 E + 00 

0.126354 E + 00 
-0.232012 E + 00 

0.301044 E + 00 

-0.868560 E + 00 
0.662351 E + 00 
0.364247 E + 00 

{ X} 0.374594 E + 00 -0.322730 E + 00 -0.934986 E + 00 
0.301044 E + 00 0.364247E + 00 

-0.232012 E + 00 0.662351 E + 00 
-0.1376883 + 00 0.126354E + 00 -0.868560E + 00 

-0.340528 E + 00 
0.257350 E + 00 

X -0.216203 E - 01 0.735270 E + 00 -0.976925 E - 02 

0.240588 E + 00 
-0.340289 E + 00 

0.240523 E + 00 

-0.319456 E + 00 
0.452064 E + 00 

-0.319117 E + 00 

-0.152368 E + 01 
0.146985 E - 03 
0.152176 E + 01 

{x} 0.554076E - 07 -0.744552E - 07 O.162007E - 06 
-0.240523 E + 00 

0.340289 E + 00 
-0.240588 E + 00 

0.319117E + 00 
-0.452064 E + 00 

0.319456 E + 00 

-0.152176 E + 01 
-0.147309 E - 03 

0.152368 E + 01 

X -0.543022 E - 02 0.183542 E + 00 -0.598416 E - 03 

0.132048E + 00 0.659236E + 00 -0.153027E + 00 
0.100591 E + 00 0.505031 E + 00 -0.282772 E + 00 

-0.552808 E - 01 -0.272466 E + 00 -0.369534 E + 00 
{z} -0.143211E + 00 -0.713236E + 00 -0.400043E + 00 

-0.369534 E + 00 
-0.282772 E + 00 
-0.153027 E + 00 

-0.552808 E - 01 
0.100591 E + 00 
0.132048 E + 00 

-0.272466 E + 00 
0.505031 E + 00 
0.659236 E + 00 

X -0.240710 E - 02 0.815859 E - 01 

-0.274884E + 01 
-0.388817E + 01 
-0.274910 E + 01 

0.209235 E + 01 
0.295844 E + 01 
0.209214 E + 01 

{z} -0.210089E - 06 0.157266E - 06 
0.274910 E + 01 
0.3888173 + 01 
0.274884 E + 01 

-0.209214 E + 01 
-0.295844 E + 01 
-0.209235 E + 01 

Imaginarv 
0.508125 E + 00 

0.201118E + 00 
-0.153594 E + 00 
-0 339748 E - 0 1  

0.216767 E + 00 
-0 339747 E - 0 1  
-0.1535943 + 00 

0.201118 E + 00 

0.326353 E + 00 

-0.126739 E + 00 
0.167436 E - 03 
0.124938 E + 00 
0.1209323 - 07 

-0.124938E + 00 
-0 .I67461 E - 03 

0.126739E + 00 

0.204009 E - 01 

0.119589 E + 01 
0.220972E + 01 
0.2887123 + 01 
0.312498E + 01 
0.288712 E + 01 
0.220972 E + 01 
0.119589 E + 01 
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TABLE 16. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS WITH 
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS AND A WEIGHTING EQUAL TO THE VALUE OF 

THE EXCITATION FREQUENCY 
(n = 7, nfrcq = 600, wfbegin = 0, wfend = 1.05, nfrcev = 2, nderv = 1, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq = 36, < = 0.03, 

Nand = 1, ranpcent = 5.0) 

I IDENTIFIED MATRIX K 

I 
INPUT MATRIX [F] TRANSPOSED 

-0 ,1000OOE + 02 0 .000000 E + 00 
0 .000000 E + 00 

0 .OOOOOO E + 00 
-0.1000ooE + 02 

-0 .lo0000 E + 02 

0.100000 E + 02 
0 .00000OE + 00 

I SINGULAR VALUES SINGO) 

0.237224 E + 02 0.174868 E + 02 
0.139268 E + 02 0.120465 E + 02 
0.451168E+ 01 0.314783E+ 01 
0.775893 E + 00 

0.194037E+ 00 -0.197202E + 00 
-0.966129 E - 02 0.258762 E - 02 

-0.515716E - 01 
0.319467E + 00 

-0.444199 E - 01 

0.125673E + 00 
-0,2401883 + 00 

0.205805 E - 01 
-0,250127 E + 00 0.124360E + 00 

0.128766E+ 00 -0.2501313+ 00 
-0.104754E-01 0.244911E-01 

-0.199418 E + 00 
0.103638E + 00 

0.297521 E + 00 
-0.4151373 - 01 

IDENTIFIED MATRIX C 

0.262822 E - 01 
0 .lo4392 E - 01 

-0.721552E - 02 
-0.672375 E - 02 

0.574916 E - 02 
-0.929245 E - 02 
-0.219335 E - 02 
-0.223546 E - 04 

0.391381 E - 01 
-0.646521 E - 02 

-0.481538 E - 02 
0.613716 E - 02 

-0.114161 E - 01 
0.326974 E - 01 

-0.600837 E - 02 
0.119797 E - 01 

-0.267557 E - 01 
0.292216 E - 02 

-0.558495 E - 02 
-0.474596 E - 02 

IDENTIFIED MATRIX [F] TRANSPOSED 

-0.166417 E - 01 
0.841053E - 02 

0.807763 E - 02 
-0.168291E - 01 

-0.127982 E - 01 
-0.387366E - 01 

0.389780 E - 01 
0.129581 E - 01 

I 

0 .000000 E + 00 0.400000 E + 02 0 .000000 E + 00 

-0.600000 E + 02 0 .000000 E + 00 0.600000 E + 02 

0.157876E+02 0.153762E+ 02 0.152525E+02 
0.102533E + 02 0.558572E + 01 0.5481473 + 01 
0.240969E+ 01 0.156592E+ 01 0.145036E + 01 

0 .lo45313 + 00 

0.254169E - 01 

0.123388 E + 00 

0.319142 E + 00 

-0.199102E + 00 

-0.252661 E + 00 

-0.447381 E - 01 

-0.531836 E - 01 
0.396093 E - 02 

-0 I97591 E + 00 

-0 . a 7 6 6 8 3  - 01 
0.296341 E + 00 

0.127390 E + 00 
-0.950152 E - 02 

-0.251767 E + 00 
0.211586B - 01 

-0.241455 E + 00 
0.122582 E + 00 

0.1941413 + 00 
-0.948409 E - 02 

0.192443 E - 01 
-0.2421423 + 00 

0.104795E + 00 

0.320933 E + 00 

0.105488E + 00 

-0.536652 E - 01 

-0.525785 E - 01 

-0.242522 E + 00 
0.199482 E - 01 

0.114940 E - 01 0 .lo5123 E - 01 
-0.214737 E - 01 -0.268256 E - 01 
-0.108850E - 01 -0.645165E - 02 0.104369E - 01 
-0 .lo9544 E - 01 0.820027 E - 02 0.252650 E - 02 

0.532516 E - 02 -0.128883 E - 01 0.314542 E - 01 
-0.241120 E - 02 0.247068 E - 02 -0 .a7280 E - 02 

0.134074E-01 -0.286496E -01  -0.227531E-02 
0.520518E - 02 0.134540E - 01 -0.165027E - 02 

-0.594804E - 03 -0.1243813 - 02 -0.352173E - 02 
-0.2204913 - 01 

0.840471 E - 02 
0.132307E - 01 

0.166587E - 01 

-0.6261053 - 02 0.685902E - 01 -0.669438 E - 02 

-0.897487.E - 01 0.557997 E - 04 0.9000973 - 01 
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TABLE 16. Concluded. 

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM 

Real - 
-0.313972 E - 01 

0.146912 E + 00 

0.359497 E + 00 

0.360092 E + 00 

0.1461993 + 00 

-0.273202 E + 00 

-0.3897163 + 00 

-0.273526 E + 00 

-0.222915 E - 01 

-0.189441E + 00 
0.268932 E + 00 

-0.189100 E + 00 
0.231661 E - 03 
0.188239E + 00 

0.188359E + 00 
-0.266216 E + 00 

-0.556408 E - 02 

0.205240 E + 01 
0.158480 E + 01 

-0.863179E + 00 
-0.221694 E + 01 
-0.850616 E + 00 

0.157362 E + 01 
0.206999E + 01 

-0.243812 E - 02 

0.378141 E + 01 
0.543130E + 01 
0.377352 E + 01 

-0.829433E - 02 
-0.383286E + 01 
-0.546253 E + 01 
-0.386050 E + 01 

Imaeinarv 
0.997180 E + 00 

-0.118723E + 00 
0.217969 E + 00 

0.301566 E + 00 

0.215638 E + 00 

-0.282088E + 00 

-0.279645 E + 00 

-0.116340E + 00 

0.734884 E + 00 

0.335951 E + 00 

0.334469 E + 00 
-0.471846 E + 00 

-0.198012 E - 03 
-0.335391 E + 00 

0.472775 E + 00 
-0.333609 E + 00 

0.184213 E + 00 

-0.968370 E + 00 
-0.732183 E + 00 

0.408463E + 00 
0.105813E + 01 
0.406636 E + 00 

-0.739520 E + 00 
-0.965541 E + 00 

0.826824 E - 01 

-0.124705 E + 01 
-0.182984E i- 01 
-0.130637E + 01 
-0.287140 E - 01 

0.128532E + 01 
0.190522E + 01 
0.133358E + 01 

Real - 
-0.132651 E - 01 

0.790101 E + 00 
-0.614467E + 00 
-0.327083 E + 00 

0.851886E + 00 
-0.340308E + 00 

0.785755 E + 00 
-0.595234 E + 00 

-0.972426 E - 02 

0.116336 E + 01 
-0.771226 E - 03 
-0.115978E + 01 

0.937335 E - 03 
0.117194 E + 01 
0.358804 E - 03 

-0.117755E+01 

-0.175400 E - 02 

-0.516602E+ 01 
-0.943054 E + 01 
-0.123650 E + 02 
-0.134179 E + 02 
-0.123457 E + 02 
-0.961499 E + 01 
-0.519187B + 01 

Imaginary 
0.507559 E + 00 

-0.328308 E + 00 
0.258013 E + 00 
0.133653 E + 00 

0.1342163 + 00 
0.253976 E + 00 

-0.359346 E + 00 

-0.328943 E + 00 

0.326416 E + 00 

-0.670824 E + 00 
-0.302198 E - 04 

0.669000 E + 00 
-0.977512 E - 03 
-0.675492 E + 00 

0.161411 E - 02 
0.676923 E + 00 

0.217996 E - 01 

0.443004 E + 01 
0.792588 E + 01 
0 .lo4736 E + 02 
0.113346 E + 02 
0 .lo3220 E + 02 
0.807067E + 01 
0.431724E + 01 
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TABLE 17. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS WITH 
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS AND A WEIGHTING EQUAL TO THE EXCITATION 

FREQUENCY (FREQC = 0.143) 
(n = 7, nfreq = 600, wfbegin = 0. wfend = 1.05, nfrccv = 2, slope = 1.0, freqc = 0.143, ntruncate = 0, ndigits = 0, nsing = 0, ngeneq = 36, 

< = 0.03, nrand = 1, ranpcent = 5.0) 
I 

i INPUT MATRIX [F] TRANSPOSED 

-0 .lOooOOE + 02 
0 .000000 E + 00 

0 .000000 E + 00 
-0.100000E + 02 

SINGULAR VALUES SING@) 

0 .000000 E + 00 
-0 .looOOOE + 02 

0 .000000 E + 00 0.400000 E + 02 0 .000000 E + 00 

0.100000 E + 02 -0.6oOOOO E + 02 0 .000000 E + 00 0.600000 E + 02 
0 .000000 E + 00 

0.1655383 + 03 
0.1436563 + 02 
0.460589 E + 01 
0.1564873 + 01 

0.2651543 + 02 
0.123272E + 02 
0.341661E + 01 

IDENTIFIED MATRIX K 

0.191268E + 00 
-0.423379 E - 02 
0.939855E - 01 

-0.189166 E + 00 
-0.807628 E - 03 
-0.301565 E - 01 

-0.237463E + 00 

-0.210622E + 00 

0.276081E + 00 

O.129428E + 00 
0.3696153 - 01 -0.682306 E - 01 

0.976965 E - 01 
-0.143292 E - 01 
0.291086 E + 00 

-0.339695E - 01 

-0.205038 E + 00 
0.202502 E - 01 

-0.203114E + 00 
0.9571343 - 01 

IDENTIFIED MATRIX C 

0.325611 E - 01 
0.228144 E - 01 

-0.176628E - 01 
0.1731623 - 01 
0.1625253 - 01 

-0.512958 E - 02 
-0.1775053 - 01 
0.676093 E - 02 
0.441799 E - 01 

-0 .I427386 - 01 

0.890313E - 02 
0.121872E - 01 

-0.1961963 - 01 
0.378228 E - 01 

-0.123922 E - 01 
-0.530941 E - 02 
-0.441811E - 01 
0.112436E - 01 

-0.727912 E - 03 
-0.119017E - 01 

IDENTIFIED MATRIX [F] TRANSPOSED 

-0.141370E - 01 
0.438555 E - 02 

0.276009 E - 02 
-0.147322 E - 01 

-0.133482E - 01 
-0.390701E - 01 

0.401532E - 01 
0.131305E - 01 

0.175181E + 02 0.1578183 + 02 0.1541573 + 02 
0.102826E + 02 0.572261E + 01 0.558805 E + 01 
0.339965 E + 01 0.241690E + 01 0.225009 E + 01 

0.949225 E - 01 
-0.204011 E + 00 

-0.366809 E - 01 
0.286695 E + 00 

-0.124693 E - 01 
0.911082E - 01 

0.209433 E - 01 
-0.193518 E + 00 
0.126117E + 00 -0.208132E + 00 

-0.664270E - 01 
0.287898E + 00 

-0.363314 E - 01 
0.353561 E - 02 

0.3611353 - 01 
-0.240579 E + 00 
0.100892E + 00 

-0.555050 E - 02 
-0.192589E+ 00 0.193633E+ 00 

0.123112 E - 01 
-0.214866 E + 00 
0.123832 E + 00 

0.256750 E + 00 

0.119472E + 00 

-0.5612193 - 01 

-0.527017 E - 01 

-0.223970 E + 00 
0.129156E - 01 

0.218270E - 01 0.187690 E - 01 0.187896 E - 01 
-0.318580 E - 01 -0.998016E - 02 -0.388969 E - 01 
-0.317158E - 01 -0.166098E - 01 0.208421E - 01 
-0.100135E - 01 0.244870 E - 01 
-0.1145723 - 01 -0.985126E - 02 0.388534E - 01 
-0 .lo0132 E - 01 -0.270362 E - 03 -0.463345 E - 02 
-0.3640183 - 03 -0.258721E - 01 -0.299473E - 02 

0.133590 E - 01 
-0.116405 E - 01 

0.945393 E - 02 

0.227179 E - 01 
-0.404830 E - 02 
-0.248995E - 01 

0.307692 E - 01 
-0.532077E - 02 
0.138725E - 01 

0.497559 E - 03 0.622341 E - 01 -0.126673 E - 02 

-0.9115383 - 01 0.865668E - 03 0.900501 E - 01 
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TABLE 17. Concluded. 

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM 

Real - Real Imaginary - 
X -0.226244 E - 01 0.941635 E + 00 -0.145619 E - 01 

0.104314E+00 -0.161006E+00 0.360523E+00 
0.288699 E + 00 -0.270052 E + 00 

-0.372212 E + 00 -0.207899 E + 00 
-0.189204 E + 00 

0.250850 E + 00 
{ z} -0.284159 E + 00 0.407824 E + 00 0.514694 E + 00 

0.276029 E + 00 
-0.217993 E + 00 

-0.390375 E + 00 -0.273547 E + 00 
0.308782 E + 00 -0.281785 E + 00 

O.l19389E+00 -0.169492E+ 00 0.444747E+00 

X -0.223600 E - 01 0.730970 E + 00 -0.995764 E - 02 

-0.296017 E - 01 
0.439583 E - 01 

-0.298898 E - 01 

0.357516 E + 00 
-0.501931 E + 00 

0.355523 E + 00 

-0 A07296 E + 01 
-0,954964 E - 02 

0.108986 E + 01 
{z} 0,208935 E - 03 -0.4364213 - 02 -0.147426 E - 01 

0.286879 E - 01 
-0.412769 E - 01 

0.296058 E - 01 

-0.347741 E + 00 
0.494417 E + 00 

-0.350852 E + 00 

-0.108239 E + 01 
0.987291 E - 02 
0 .lo7716 E + 01 

X -0.596619 E - 02 0.182808E + 00 -0.633177 E - 03 

-0.136115 E + 01 
-0 .lo6456 E + 01 

0.612368 E + 00 

0.124983E + 01 
0.975268 E + 00 

-0.5003393 + 00 

-0.399930 E + 01 
-0.743550 E + 01 
-0.971781 E + 01 

{z} 0 .I44026 E + 01 -0.141106 E + 01 -0 .lo5472 E + 02 
-0.967205 E + 01 
-0.737276 E + 01 
-0.397045 E + 01 

0.567736 E + 00 
-0 .lo5771 E + 01 
-0.136202E + 01 

-0.539516 E + 00 
0.997902 E + 00 
0.126901 E + 01 

X -0.236946 E - 02 0.817272 E - 01 

-0.810124E + 00 
-0.118387 E + 01 
-0 329845 E + 00 

-0.171025E + 01 
-0.246641 E + 01 
-0.168920 E + 01 

{ z} -0.426308 E - 02 0.238807 E - 02 
0.171779E + 01 
0.246024 E + 01 
0.173676 E + 01 

0.839828 E + 00 
0.122304 E + 01 
0.855094 E + 00 

Imaginary 
0.463997 E + 00 

-0.457260 E + 00 
0.343298 E + 00 
0.275907 E + 00 

0.365992 E + 00 
0.366737E + 00 

-0.689617 E + 00 

-0.587045 E + 00 

0.324418 E + 00 

0.728541 E + 00 
0.990619 E - 02 

-0.746506 E + 00 
0.139928 E - 01 
0.736158 E + 00 

-0.108948 E - 01 
-0.728473 E + 00 

0.204200 E - 01 

0.471547E + 01 
0.840955 E + 01 
0.111727E + 02 
0.121141E + 02 
0.111150E + 02 
0.878663 E + 01 
0.472814 E + 01 
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TABLE 18. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS WITH 
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS, A WEIGHTING EQUAL TO THE EXClTATION 

FREQUENCY, AND 14 SUBRANGES OF EXCITATION FREQUENCIES 
(n = 7, manges = 14, nfreq = 6, 25, 6.25, 6, 25.6, 25, 6, 25, 6.25, 6, 25, 0.0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, wfbegin = 0, 

0,0,0,0,0,0,0,0,0,O,wfend=1.76E-OO2,2.32E-OO2,7.22E-OO2,9.12E-OO2,0.161,0.205,0.286,0.364,0.44,0.56, 
0.644, 0.82, 0.88, 1.12. 0, 0, 0, 0, 0, 0. 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, nfrcev = 2, slope = 1.0, freqc = 0, ntruncate = 0, ndigits = 0, nsing = 0, 

ngeneq = 36, < = 0.03. nrand = 1, ranpcent = 5.0) 

1.76E-OO2,2.32E-OO2,7.22E-OO2,9.12E-OO2,0.161,0.205,0.286,0.364,0.44,0.56,0.644,0.82,0.88,0,0,0,0,0,0, 

INPUT MATRIX [F] TRANSPOSED 

0 .000000 E + 00 
0 .000000 E + 00 

0 .OOOOOO E + 00 
0 .000000 E + 00 

O.000000E + 00 O.lO00OOE + 02 
-0.100000 E + 02 0 .000000 E + 00 

SINGULAR VALUES SING(1) 

0.154728 E + 01 
0.596769 E + 00 
0.207062 E + 00 

0.763904 E + 00 
0.490812E + 00 
0.177566 E + 00 

0.476817 E - 01 
IDENTIFIED MATRIX K 

0.1933543 + 00 

O.l22998E+ 00 
-0.945415 E - 02 

-0.240734 E + 00 
0.196581 E - 01 

-0.245141 E + 00 
0.125272E + 00 

-0.981144 E - 02 
0.298263E + 00 

-0.412183 E - 01 

IDENTIFIED MATRIX C 

-0.197943 E + 00 
0.357336 E - 02 

-0.500582 E - 01 
0.314237 E + 00 

0.122862E + 00 
-0.412701 E - 01 

-0.248485 E + 00 
0.246518 E - 01 

-0.199496 E + 00 
0.101132E + 00 

0.180176 E - 01 
0.214452 E - 02 
0 .lo2743 E - 01 

-0.258424 E - 01 
0.1886613 - 02 

-0.680676 E - 02 
-0.155315 E - 02 
0.803895 E - 02 
0.369223 E - 01 

-0.509375 E - 02 

-0.206961 E - 01 
0.294256 E - 02 
0.187719 E - 02 
0.180825 E - 01 
0.495965E - 02 
0.144186 E - 01 

-0.254373 E - 01 
0.976601 E - 02 

-0.850457 E - 02 
-0.122459 E - 02 

IDENTIFIED MATRIX [F] TRANSPOSED 

-0.149776 E - 02 
0.330069 E - 02 

0.312827 E - 02 
-0.161662 E - 02 

0 .000000 E + 00 0.500000 E + 02 0 .000000 E + 00 

-0.600000 E + 02 0 .000000 E + 00 0.600000 E + 02 

0.697949E + 00 0.6724013 + 00 0.641849E + 00 
0.444835E+ 00 0.291199E+OO 0.235478E+00 
0.146209 E + 00 0.992819 E - 01 0.614743 E - 01 

0.101628E + 00 
-0.197432E + 00 
0.248456 E - 01 

-0.247315 E + 00 
0.122582 E + 00 

0.314779 E + 00 
-0.418250 E - 01 

-0.522248 E - 01 
0.372971 E - 02 

-0.196322 E + 00 

-0.170855 E - 02 
-0.683449 E - 02 
0.976027 E - 03 

-0.210031E - 01 
0.181619 E - 01 
0.140785 E - 04 
0.172355 E - 01 
0.637976 E - 02 

-0.53445 E - 02 
-0.196320E - 01 

-0.406954 E - 01 
0.298574 E + 00 

O.123W3E + 00 
-0.917192 E - 02 

-0.247054 E + 00 
0,1919313 -01 

-0.241140 E + 00 
0.124163E + 00 

0.193769E + 00 
-0.916989 E - 02 

-0.432949 E - 02 
0.338379 E - 01 

-0.433979 E - 02 
-0.262011 E - 02 
-0.879909 E - 02 
-0.507772 E - 02 
-0.260363 E - 01 
0.114627 E - 01 

-0.759989 E - 02 
0.184871 E - 01 

0.177047 E - 01 
-0.240295 E + 00 
0.102093E + 00 

-0.532834 E - 01 
0.317501 E + 00 

0.103661E + 00 
-0.240821 E + 00 

-0.516991 E - 01 

0.183821 E - 01 

-0.144930 E - 02 
-0.987023 E - 02 
-0.342985 E - 02 
-0.313762 E - 02 
0.366078 E - 01 

-0.142892 E - 01 
-0.115776 E - 02 
-0.593177 E - 02 
-0.477437 E - 02 

-0.231955 E - 02 0.803777 E - 01 -0.323477 E - 02 

-0.133848 E - 01 
-0.398884 E - 01 

0.393812E - 01 
0.137242 E - 01 

-0.900116 E - 01 -0.439619 E - 03 0.9086133 - 01 
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TABLE 18. Concluded. 

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM 

Real - 
-0.333129 E - 01 

0.137753E + 00 

0.3360373 + 00 

0.3431693 + 00 

0.139747E + 00 

-0.260102 E + 00 

-0.368147 E + 00 

-0.263621 E + 00 

-0.224623E - 01 

0.681439 E - 01 
-0.995215 E - 01 

0.678031 E - 01 
0.229698 E - 03 

-0.697351 E - 01 
0.924596 E - 01 

-0.660361 E - 01 

-0.526201 E - 02 

0.211342 E + 01 
0.160245 E + 01 

-0.879670E + 00 
-0.230402 E + 01 
-0.880857 E + 00 

0.1624173 + 01 
0.2091813 + 01 

-0.258316 E - 02 

0.418531E + 01 
0.592605E + 01 
0.419057 E + 01 
0.409464 E - 01 

-0.416480E + 01 
-0.590389 E + 01 
-0.414171 E + 01 

Imaginary 
0.990801 E + 00 

-0.126715E + 00 
0.235549 E + 00 

0.325396 E + 00 

0.237781 E + 00 

-0.306315 E + 00 

-0.303283 E + 00 

-0.126105 E + 00 

0.734756 E + 00 

0.354674 E + 00 

0.353226 E + 00 
-0.501762 E + 00 

-0.374665 E - 03 
-0.355207 E + 00 

0.502190 E + 00 
-0.352054 E + 00 

0.184412E + 00 

0.916286 E + 00 
0.705553 E + 00 

-0.374084 E + 00 
-0.100166E + 01 
-0.377411 E + 00 

0.701211 E + 00 
0.929200 E + 00 

0.823099 E - 01 

0.321875 E + 00 
0.384253 E + 00 
0.223368 E + 00 

-0.1275193 + 00 
-0.435140 E + 00 
-0.506359 E + 00 
-0.324332 E + 00 

- Real 
-0.143679 E - 01 

0 320647 E - 01 
-0.648627E - 01 
-0.333049 E - 01 

0.906997 E - 01 
-0.330466 E - 01 
-0.646619 E - 01 

0 325250 E - 01 

-0.956934 E - 02 

-0.152734 E + 01 
0.333349 E - 03 
0.151766 E + 01 
0.787200 E - 03 

-0.153013 E + 01 
0.177169 E - 02 
0.1528313 + 01 

-0.203771 E - 02 

-0.133305 E + 01 
-0.243086 E + 01 
-0.321803E + 01 
-0.340816 E + 01 
-0.316847E + 01 
-0.241293 E + 01 
-0.132634 E + 01 

Imaginary 
0.508946 E + 00 

0.475874E + 00 
-0.358249 E + 00 
-0.198755 E + 00 

0.5180593 + 00 
-0.199993 E + 00 
-0.363117E + 00 

0.476766 E + 00 

0.326546 E + 00 

-0 SO6448 E + 0 0  
-0.445495 E - 03 

0 351435 E - 0 1  
0.681113 E - 03 

-0.977051 E - 01 
-0.242099 E - 02 

0.883642 E - 01 

0.212589 E - 01 

0.315479 E + 01 
0.581827 E + 01 
0.774930 E + 01 
0 329124 E + 01 
0.768464 E + 01 
0.589532 E + 01 
0.320070E + 01 
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TABLE 19. IDENTIFICATION RESULTS OF A SIMPLY SUPPORTED BEAM, USING TWO EXCITATION VECTORS AND 
RESPONSES CONTAMINATED WITH 5 PERCENT RANDOM ERRORS, WITH A WEIGHTING PROPORTIONAL TO THE 

EXCITATION FREQUENCY (FREQC = 0.04), 14 FREQUENCY SUBRANGES, AND 14 DISPLACEMENT POINTS 
(n = 7, nranges = 14, nfreq = 6, 25, 6, 25, 6,25, 6, 25, 6, 25, 6, 25, 6, 25, 0, 0.0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, wfbegin = 0, 

0,0,0,0,0,0,0,0,0,O,wfend= 1 .76E-002.2 .32E-  002,7.22E- 002,9.12E -002,0.161,0.205,0.286,0.364,0.44,0.56, 
0.644,0.82,0.88, 1.12,0, 0, 0, 0, 0, 0, 0, 0.0, 0, 0, 0, 0, 0, 0, 0, nfrcev = 2, slope = 1.0, freqc = 4 .O E - 002, ntruncate = 0, ndigits = 0, 

1.76E - 002, 2 .32E - 002.7.22E - 002, 9 .12E - 002,0.161,0.205,0.286, 0.364, 0.44, 0.56,0.644, 0.82, 0.88, 0, O , O , O ,  0, 0, 

nsing = 0, ngeneq = 36, = 0.03, nrand = 1, ranpcent = 5.0) 

INPUT MATRIX [F] TRANSPOSED 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 
0 .000000 E + 00 

0 .000000 E + 00 

0 .000000 E + 00 
-0 .lO00OOE + 02 

0.100000 E + 02 
0 .OO00OOE + 00 

-0.600000 E + 02 

SINGULAR VALUES SING(1) 

0.150828 E + 01 0.693129 E + 00 0.687091E + 00 
0.312184E+00 0.246224E+00 0.227471E+ 00 

I 0 .I03657 E + 00 0.905946 E - 01 0.742751 E - 01 
I 

0.307532 E - 

IDENTIFIED MATRIX K 

0.417696 E - 03 
-0.948580 E - 03 
-0.246370 E - 04 

0.327139 E - 04 
-0.975619 E - 04 

0 .I851813 - 03 
0.267418 E - 04 

-0.392488 E - 03 
0.538941 E + 00 
0.130944 E - 02 

IDENTIFIED MATRIX C 

0.102570 E - 02 
0.216651 E - 03 
0.185366E -03  

-0.334275 E - 04 
-0.688270 E - 03 
-0.661696 E - 03 
-0.212517 E - 02 

0.585366 E - 02 
0.442020 E - 01 
0.437421 E - 03 

01 

-0.376368 E - 04 
-0.726364 E - 03 

0.118328E - 03 
0.336914 E - 01 
0.198869E - 03 
0.7183133 - 03 

-0.319997E - 03 
0.637571 E - 03 
0.270588 E - 03 
0.243329 E - 02 

0.577179 E - 04 
-0.293144 E - 05 

0.836068E - 03 
-0.994578 E - 04 

0.193379E - 04 
-0.118919E - 03 

0.258991E + 00 
0.452296 E - 03 
0.443842 E - 03 

-0.348219 E - 03 

-0.932000 E - 03 
0 .IO4659 E - 02 

-0.980276 E - 04 
0 .IO8109 E - 01 
0.356010 E - 02 

-0.698401 E - 03 
-0.347155 E - 05 

0.746605 E - 02 
0.299515 E - 03 

-0.441657 E - 02 

0.235836 E - 03 
-0.469890 E - 04 

0.156793 E - 04 
0.736009 E - 05 
0.926320 E - 03 
0.140366 E - 02 
0.311698E - 01 
0.430854 E - 03 
0.596656 E - 01 
0.974302 E - 03 

0.500000 E + 02 0 .000000 E + 00 

0 .000000 E + 00 0.600000 E + 02 

0.343049E + 00 
0.146511E + 00 

0.3212843 + 00 
0.117884E + 00 

0.502146 E - 01 0.346260 E - 01 

-0.116407E - 03 
0.673807 E - 02 
0.281029 E - 02 

-0.210542 E - 04 
-0.109194E - 03 
-0.661482 E - 04 

0.197241 E - 03 
-0.245112 E - 03 

0.745831 E - 03 
0.986410 E + 00 

-0.341272 E - 03 
0.491991 E - 02 
0.274113 E - 02 

-0.149580 E - 03 
0.981349 E - 04 

-0.740172 E - 02 
-0.192195 E - 03 

0.767516 E - 03 
0.207848 E - 02 
0.584156 E - 01 

0.309257 E - 03 
0 .I65086 E - 04 

-0.576808 E - 04 
0.209427 E - 02 
0.106530E + 00 

-0.384768 E - 03 
0.1454WE - 02 

-0.642817 E - 03 
0.131058E - 02 

-0.200306 E - 03 
0.627058 E - 03 
0.547004 E - 03 

-0.283810 E - 03 
0.195570 E - 01 

-0.246667 E - 02 
0.636600 E - 03 
0.252518 E - 03 
0.126733 E - 01 

IDENTIFIED MATRIX [F] TRANSPOSED 

0.210166 E - 01 -0.182372 E - 03 -0.210425 E - 01 -0.235332 E - 03 0.209816 E - 01 
0.103170 E - 03 -0.205939 E - 01 

0.728854 E - 04 
-0.549493 E - 01 

-0.172108 E - 01 
-0.268878 E - 03 

0 .I51139 E - 03 0.389858 E - 01 0.313262 E - 04 
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TABLE 19. Concluded. 

EIGENVALUES AND EIGENVECTORS OF IDENTIFIED SYSTEM 

- Real Imaginary - Real 
X -0.2918676 - 01 0.992726 E + 00 -0.155838 E - 01 

-0.130905E - 02 0.181201E - 03 -0.196555E - 02 
-0.817368 E - 04 -0.684683 E - 03 

0.473325 E - 03 0.288623E - 03 
{x} -0.130569E-02 0.9627813-03 -0.118525E-02 

0.400412E - 02 
-0.561057 E - 03 

0.728860 E - 03 
-0.167267 E - 03 

0.662414 E + 00 

0.208503 E - 02 
0.877872 E - 03 
0.772220 E + 00 

-0.186203 E + 01 
-0.402491 E - 02 

0.490241 E - 02 

X -0,221033 E - 01 0.733795 E + 00 -0.977345 E - 02 

0.164676E - 02 -0.1563503 - 02 0.3699383 - 02 
0.108943E - 02 0.616446 E - 03 
0.333366 E - 02 0.404650E - 02 

-0.167904 E - 02 
-0.410293 E - 02 

{x} -0.978995 E - 03 0.2434503 - 02 -0.302620E + 01 
-0.429218E - 03 0.103778E - 02 -0.640637 E - 02 
-0.108910E + 01 -0.154629 E - 02 

0.460804 E - 02 
0.644654 E + 00 
0.217372 E - 02 0.115579 E - 03 

X -0.545432 E - 03 0.204317 E - 01 -0.245120 E - 02 

-0.363861 E + 00 -0.124249 E + 01 
-0.917895 E - 03 

0.905285 E - 02 
-0.698376 E + 00 

{ X} -0 .lo3411 E - 02 -0.197433 E - 02 0.724993 E - 03 
0.256213 E - 02 0.443937 E - 03 

0.647801E - 03 -0.515616E- 03 -0.140696E- 02 
0.131706 E - 02 

0.693616 E - 03 

-0.167317 E - 03 

-0.543437 E - 03 -0.828621E - 03 

X -0.540642E - 02 0.183466 E + 00 0.628536 E - 03 

Imaginary 
0.508665E + 00 

0.143550 E - 02 
0.578240 E - 03 
0.590042 E - 03 
0.478200 E - 02 
0.463903 E + 00 
0.206364 E - 02 

-0.736849 E - 02 

0.326246 E + 00 

0.260896 E - 02 
-0.189395E - 02 
-0.673022 E - 03 

0.343042 E + 00 
0.925718E - 03 
0.196912E - 02 

-0.194712E - 03 

0.820300 E - 01 

0.560156 E - 02 
0.428296 E + 00 

-0.628659 E - 03 
0.412003 E - 03 
0.120021E - 03 
0.294413 E - 03 

-0.253410 E - 03 

-0,134446 E - 02 
-0.1586213 - 02 

-0.155821 E - 04 
-0.181347E - 02 

- 0 . 5 0 0 1 6 2 E  + 00 0 . 3 3 2 3 0 8 3  + 00 
{ X} -0.654223 E - 03 0.655906 E - 03 

-0.9328103 - 03 
-0.215634 E - 03 

0.792550 E - 03 

-0,5153633 - 03 
0.489200 E - 03 
0.147443 E - 02 

37 



I I 

- 
++UI+t+*+tt+ttw+~- I- 

- - 
+ L + t + + * + +  

I I I I l 

- 
6o Frequency 

40 

.++++4++I-c+.+ 
x 10 

- -N m - 
y4 

I I I I I I 
I I I I I I -50 -40 -30 -20 -10 0 10 20 

60 
Frequency 

x 10 
40 

0 ;;5; = 113.1 psf rad/sec 

a,_-. I I 

Real part 
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Figure 1. Description of the dynamic system used as 
an example. 
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